Skip to main content
Log in

Studying hunting behaviour in the striped field mouse using data compression

  • Original Article
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

We compare predatory behaviour towards a mobile insect in three species of small mammals: the granivorous striped field mouse, the insectivorous common shrew and the Norway rat (a generalist). The striped field mouse displays a surprisingly efficient hunting stereotype. We apply the data compression method (Ryabko et al. Theory Comput Syst 52:133–147, 2013) to compare the complexity of hunting behavioural patterns and to evaluate the flexibility of stereotypes and their succinctness. Norway rats demonstrated the highest level of complexity of hunting behaviour, with the highest proportion of ‘auxiliary’ and ‘noise’ elements and relatively low proportion of ‘key’ elements in their behaviours. The predominance of ‘key’ elements resulted in similarly low levels of complexity of hunting stereotypes in striped field mice and shrews. The similarity between hunting stereotypes of the insectivorous shrew and the granivorous striped field mouse enables us to argue about evolutionary roots of hunting behaviour in small mammals. We show that this method is a useful tool for comparing ethograms as ‘biological texts’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babińska-Werka J, Gliwicz J, Goszczyński J (1981) Demographic processes in an urban population of the striped field mouse. Acta Theriol 26:275–283

    Article  Google Scholar 

  • Bateson P, Martin PR (1999) Design for a life: how behaviour develops. Jonathan Cape, London

    Google Scholar 

  • Beecher MD (1989) Signalling systems for individual recognition: an information theory approach. Anim Behav 38:248–261

    Article  Google Scholar 

  • Calhoun JB (1962) The ecology and sociobiology of the Norway rat. Public Health Service Publication, Washington D.C., p 288

    Google Scholar 

  • Casarrubea M, Sorbera F, Crescimanno G (2009) Multivariate data handling in the study of rat behavior: an integrated approach. Behav Res Methods 41:772–781. doi:10.3758/BRM.41.3.772

    Article  PubMed  Google Scholar 

  • Casarrubea M, Jonsson GK, Faulisi F, Sorbera F, Di Giovanni G, Benigno A, Benigno A, Crescimanno G, Magnusson MS (2015) T-pattern analysis for the study of temporal structure of animal and human behavior: a comprehensive review. J Neurosci Methods 239:34–46. doi:10.1016/j.jneumeth.2014.09.024

    Article  CAS  PubMed  Google Scholar 

  • Churchfield S, Rychlik L, Taylor JR (2012) Food resources and foraging habits of the common shrew, Sorex araneus: does winter food shortage explain Dehnel’s phenomenon? Oikos 121:1593–1602. doi:10.1111/j.1600-0706.2011.20462.x

    Article  Google Scholar 

  • Fedderwitz F, Björklund N, Ninkovic V, Nordlander G (2015) The structure of feeding behavior in a phytophagous insect (Hylobius abietis). Entomologia Experimentalis et Applicata 155:229–239. doi:10.1111/eea.12302

    Google Scholar 

  • Forrester GS (2008) A multidimensional approach to investigations of behaviour: revealing structure in animal communication signals. Anim Behav 76:1749–1760. doi:10.1016/j.anbehav.2008.05.026

    Article  Google Scholar 

  • Gammie SC, Hasen NS, Rhodes JS, Girard I, Garland T (2003) Predatory aggression, but not maternal or intermale aggression, is associated with high voluntary wheel-running behavior in mice. Horm Behav 44:209–221

    Article  PubMed  Google Scholar 

  • Gattermann R, Fritzsche P, Neumann K, Al-Hussein I, Kayser A, Abiad M, Yakti R (2001) Notes on the current distribution and the ecology of wild golden hamsters (Mesocricetus auratus). J Zool 254:359–365. doi:10.1017/S0952836901000851

    Article  Google Scholar 

  • Gauvrit N, Zenil H, Delahaye JP, Soler-Toscano F (2014) Algorithmic complexity for short binary strings applied to psychology: a primer. Behav Res Methods 46:732–744. doi:10.3758/s13428-013-0416-0

    Article  PubMed  Google Scholar 

  • Kershenbaum A, Blumstein DT, Roch MA et al (2014) Acoustic sequences in non-human animals: a tutorial review and prospectus. Biol Rev. doi:10.1111/brv.12160

    PubMed  PubMed Central  Google Scholar 

  • Landry SO (1970) The Rodentia as omnivores. Q Rev Biol 45:351–372

    Article  PubMed  Google Scholar 

  • Langley WM (1994) Comparison of predatory behaviors of deer mice (Peromyscus maniculatus) and grasshopper mice (Onychomys leucogaster). J Comp Psychol 108:394

    Article  Google Scholar 

  • MacNulty DR, Mech LD, Smith DW (2007) A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf. J Mammalogy 88:595–605. doi:10.1644/06-MAMM-A-119R1.1

    Article  Google Scholar 

  • Magnusson MS (2000) Discovering hidden time patterns in behavior: T-patterns and their detection. Behav Res Methods 32:93–110. doi:10.3758/BF03200792

    Article  CAS  Google Scholar 

  • Martin PR, Bateson P (1993) Measuring behaviour: an introductory guide. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • McCowan B, Doyle LR, Hanser SF (2002) Using information theory to assess the diversity, complexity, and development of communicative repertoires. J Compar Psychol 116:166. doi:10.1037/0735-7036.116.2.166

    Article  Google Scholar 

  • Oller DK, Griebel U (2008) Evolution of communicative flexibility: complexity, creativity, and adaptability in human and animal communication. MIT Press (MA), London

    Book  Google Scholar 

  • Panteleeva S, Reznikova Z, Vygonyailova O (2013) Quantity judgments in the context of risk/reward decision making in striped field mice: first “count,” then hunt. Front Psychol 4:53. doi:10.3389/fpsyg.2013.00053

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollard KA, Blumstein DT (2012) Evolving communicative complexity: insights from rodents and beyond. Philosophical Transactions of the Royal Society of London B: Biological Sciences 367:1869–1878. doi:10.1098/rstb.2011.0221

    Article  PubMed  PubMed Central  Google Scholar 

  • Polsky RH (1977) The ontogeny of predatory behaviour in the golden hamster (Mesocricetus A. auratus). I. The influence of age and experience. Behaviour 61:26–56. doi:10.1163/156853977X00478

    Article  Google Scholar 

  • Reznikova Z (2007) Animal intelligence: from individual to social cognition. Cambridge University Press, Cambridge

    Google Scholar 

  • Reznikova Z, Panteleeva S, Danzanov Z (2012) A new method for evaluating the complexity of animal behavioral patterns based on the notion of Kolmogorov complexity, with ants’ hunting behavior as an example. Neurocomputing 84:58–64. doi:10.1016/j.neucom.2011.12.019

    Article  Google Scholar 

  • Ryabko B, Reznikova Z (1996) Using Shannon entropy and Kolmogorov complexity to study the communicative system and cognitive capacities in ants. Complexity 2:37–42

    Article  Google Scholar 

  • Ryabko D, Schmidhuber J (2009) Using data compressors to construct order tests for homogeneity and component independence. Appl Math Lett 22:1029–1032. doi:10.1016/j.aml.2008.01.008

    Article  Google Scholar 

  • Ryabko B, Reznikova Z, Druzyaka A, Panteleeva S (2013) Using ideas of Kolmogorov complexity for studying biological texts. Theory of Computing Systems 52:133–147. doi:10.1007/s00224-012-9403-6

    Article  Google Scholar 

  • Saarikko J (1989) Foraging behaviour of shrews. Ann Zool Fenn 26:411–423

    Google Scholar 

  • Sadowska ET, Baliga-Klimczyk K, Chrząścik KM, Koteja P (2008) Laboratory model of adaptive radiation: a selection experiment in the bank vole. Physiol Biochem Zool 81:627–640. doi:10.1086/590164

    Article  PubMed  Google Scholar 

  • Sadowska ET, Stawski C, Rudolf A et al (2015) Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment. Proc Biol Sci 282:20150025. doi:10.1098/rspb.2015.0025

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarko DK, Leitch DB, Girard I, Sikes RS, Catania KC (2011) Organization of somatosensory cortex in the northern grasshopper mouse (Onychomys leucogaster), a predatory rodent. J Comp Neurol 519:64–74. doi:10.1002/cne.22504

    Article  PubMed  PubMed Central  Google Scholar 

  • Timberlake W, Washburne DL (1989) Feeding ecology and laboratory predatory behavior toward live and artificial moving prey in seven rodent species. Anim Learn Behav 17:2–11. doi:10.3758/BF03205206

    Article  Google Scholar 

  • Tinbergen N (1951) The study of instinct. Oxford University Press, London

    Google Scholar 

  • Vogel P (1976) Energy consumption of European and African shrews. Acta Theriol 21:195–206

    Article  Google Scholar 

  • Whelton JP, O’Boyle M (1977) Early experience and the development of predatory and intraspecific aggression in mice. Anim Learn Behav 5:291–296

    Article  Google Scholar 

  • Whishaw IQ, Kolb B (2004) The behavior of the laboratory rat: a handbook with tests. Oxford University Press. doi:10.1093/acprof:oso/9780195162851.001.0001

    Google Scholar 

Download references

Acknowledgements

The study was supported by the Russian Fund for Basic Research (No. 17-04-00702). We are grateful to Daniil Ryabko for the helpful discussion and useful comments. We thank Maxim Novikov and Danil Reusov for writing auxiliary programs for handling the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanna Reznikova.

Electronic supplementary material

video 1

Hunting behaviour of a Norway rat (AVI 2397 kb)

video 2

Hunting behaviour of a striped field mouse (AVI 7012 kb)

video 3

Hunting behaviour of a common shrew (AVI 3442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznikova, Z., Levenets, J., Panteleeva, S. et al. Studying hunting behaviour in the striped field mouse using data compression. acta ethol 20, 165–173 (2017). https://doi.org/10.1007/s10211-017-0260-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-017-0260-9

Keywords

Navigation