Skip to main content
Log in

Impact of measurement errors on the performance and distributional properties of the multivariate capability index \(\mathbf{NMC }_\mathbf{pm }\)

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

Current industrial processes are sophisticated enough to be tied to only one quality variable to describe the process result. Instead, many process variables need to be analyze together to assess the process performance. In particular, multivariate process capability analysis (MPCIs) has been the focus of study during the last few decades, during which many authors proposed alternatives to build the indices. These measures are extremely attractive to people in charge of industrial processes, because they provide a single measure that summarizes the whole process performance regarding its specifications. In most practical applications, these indices are estimated from sampling information collected by measuring the variables of interest on the process outcome. This activity introduces an additional source of variation to data, that needs to be considered, regarding its effect on the properties of the indices. Unfortunately, this problem has received scarce attention, at least in the multivariate domain. In this paper, we study how the presence of measurement errors affects the properties of one of the MPCIs recommended in previous researches. The results indicate that even little measurement errors can induce distortions on the index value, leading to wrong conclusions about the process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Actually, Majeske (2008) gives two different formulas for each case, in order to distinguish the case of independent gauge errors from the case of correlated errors. However, both cases can be represented by the same formula taking into account that under independent errors, the eigenvalues of \({\varvec{{\varSigma }}}_{V}\) coincide with the variance of the errors.

References

  • AIAG.: Measurement System Analysis. Automotive Industry Action Group, Detroit, 3rd edn (2002)

  • Burdick, R.K., Borror, C.M., Montgomery, D.C.: A review of methods for measurement systems capability analysis. J. Qual. Technol. 35(4), 342–354 (2003)

    Google Scholar 

  • Dianda, DF.: Estudio estadístico de sistemas de medida e indicadores de capacidad de procesos multivariados, en contextos de mejora de la calidad y la productividad. Ph.D. thesis, Universidad Nacional de Rosario (2015)

  • Dianda, D.F., Quaglino, M.B., Pagura, J.A.: Performance of multivariate process capability indices under normal and non-normal distributions. Qual. Reliab. Eng. Int. (2015). doi:10.1002/qre.1939

    Google Scholar 

  • Dianda, D.F., Quaglino, M.B., Pagura, J.A.: Distributional properties of multivariate process capability indices under normal and non-normal distributions. Qual. Reliab. Eng. Int. (2016). doi:10.1002/qre.2003

    Google Scholar 

  • García, T., Vásquez, M., Ramírez, G., García, J.: Extensión multivariante del índice de capacidad real de procesos. Rev. Ing. UC 14, 86–91 (2007)

    Google Scholar 

  • Hubele, N.F., Shahriari, H., Cheng, C.S.: A bivariate process capability vector, in statistics and design in process control. In: Keats, J.B., Montgomery, D.C. (eds.) Statistical Process Control in Manufacturing, pp. 299–310. Marcel Dekker, New York (1991)

    Google Scholar 

  • Majeske, K.D.: Approval criteria for multivariate measurement systems. J. Qual. Technol. 40(2), 140–153 (2008)

    Article  Google Scholar 

  • Mittag, H.J.: Measurement error effects on the performance of process capability indices. In: Lenz, H.J., Wilrich, P.T. (eds.) Frontiers in Statistical Quality Control, pp. 195–206. Physica-Verlag HD, Heidelberg (1997)

    Chapter  Google Scholar 

  • Montgomery, D., Runger, G.: Gauge capability and designed experiments. Part I: basic methods. Qual. Eng. 6(1), 115–135 (1993a)

    Article  Google Scholar 

  • Montgomery, D., Runger, G.: Gauge capability and designed experiments. Part II: experimental design models and variance component estimation. Qual. Eng. 6(2), 289–305 (1993b)

    Article  Google Scholar 

  • Pan, J.N., Li, C.I., Ou, S.C.: Determining the optimal allocation of parameters for multivariate measurements system analysis. Expert Syst. Appl. 42, 7036–7045 (2015)

    Article  Google Scholar 

  • Pan, J.N., Lee, C.Y.: New capability indices for evaluating the performance of multivariate manufacturing processes. Qual. Reliab. Eng. Int. 26(1), 3–15 (2010)

    Article  Google Scholar 

  • Saleh, A.M.E.: Theory of Preliminary Test and Stein-Type Estimation with Applications. Wiley, Hoboken (2006)

    Book  MATH  Google Scholar 

  • Scagliarini, M.: Multivariate process capability using principal component analysis in the presence of measurement errors. ASta Adv. Stat. Anal. 95, 113–128 (2011)

    Article  MathSciNet  Google Scholar 

  • Shahriari, H., Abdollahzadeh, M.: A new multivariate process capability vector. Qual. Eng. 21(3), 290–299 (2009)

    Article  Google Scholar 

  • Shinde, R.L., Khadse, K.G.: Multivariate process capability using principal component analysis. Qual. Reliab. Eng. Int. 25(1), 69–77 (2009)

    Article  MATH  Google Scholar 

  • Shishebori, D., Hamadani, A.: The effect of gauge measurement capability and dependency measure of process variables on the mcp. J. Ind. Syst. Eng. 4(1), 59–76 (2010)

    Google Scholar 

  • Taam, W., Subbaiah, P., Liddy, J.W.: A note on multivariate capability indices. J. Appl. Stat. 20(3), 339–351 (1993)

    Article  Google Scholar 

  • Wang, F.K., Hubele, N., Lawrence, F., Miskulin, J., Shahriari, H.: Comparison of three multivariate process capability indices. J. Qual. Technol. 32(3), 263–275 (2000)

    Google Scholar 

  • Wang, F., Du, T.: Using principal component analysis in process performance for multivariate data. Omega 28(2), 185–194 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to gratefully acknowledge the reviewers whose valuable comments and suggestions helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela F. Dianda.

Appendix: Proof of positive definiteness of \( \left( {\varvec{{\varSigma }}}^{-\mathbf{1}} {\varvec{{\varSigma }}}_{{\varvec{V}}} \left( {\varvec{{\varSigma }}}+{\varvec{{\varSigma }}}_{{\varvec{V}}}\right) ^{-\mathbf{1 }}\right) \)

Appendix: Proof of positive definiteness of \( \left( {\varvec{{\varSigma }}}^{-\mathbf{1}} {\varvec{{\varSigma }}}_{{\varvec{V}}} \left( {\varvec{{\varSigma }}}+{\varvec{{\varSigma }}}_{{\varvec{V}}}\right) ^{-\mathbf{1 }}\right) \)

After Eq. (13) of Sect. 4, it was stated that the quadratic form:

$$\begin{aligned} \left( {\varvec{\mu }}-{{\varvec{T}}} \right) ^{'} \left( {\varvec{{\varSigma }}}^{-\mathbf{1}} {\varvec{{\varSigma }}}_{{\varvec{V}}} \left( {\varvec{{\varSigma }}}+{\varvec{{\varSigma }}}_{{\varvec{V}}}\right) ^{-\mathbf{1}}\right) \left( {\varvec{\mu }}-{{\varvec{T}}} \right) \end{aligned}$$
(21)

is definite positive, which holds if the matrix

$$\begin{aligned} {\varvec{{\varSigma }}}^{-\mathbf{1}} {\varvec{{\varSigma }}}_{{\varvec{V}}} \left( {\varvec{{\varSigma }}}+{\varvec{{\varSigma }}}_{{\varvec{V}}}\right) ^{-\mathbf{1}} \end{aligned}$$
(22)

is positive definite.

In first place, given the structure assumed for matrix \({\varvec{{\varSigma }}}_{{\varvec{V}}}\) in this work, then the matrix in (22) can be written as:

$$\begin{aligned} {\varvec{{\varSigma }}}^{-{1}} {\varvec{{\varSigma }}}_{{\varvec{V}}} \left( {\varvec{{\varSigma }}}+{\varvec{{\varSigma }}}_{{\varvec{V}}}\right) ^{-{1}}={\varvec{\sigma }}_{{\varvec{G}}}^\mathbf{2 } {\varvec{{\varSigma }}}^{-\mathbf{1}} \left( {\varvec{{\varSigma }}}+{\varvec{{\varSigma }}}_{{\varvec{V}}} \right) ^{-\mathbf{1}}={\varvec{\sigma }}_{{\varvec{G}}}^\mathbf{2 } \left( {\varvec{{\varSigma }}}_{{\varvec{Y}}} {\varvec{{\varSigma }}}\right) ^{-\mathbf{1}} \end{aligned}$$
(23)

Therefore, it is necessary to prove that all the eigenvalues of the matrix \({\varvec{{\varSigma }}}_{{\varvec{Y}}}\varvec{{\varSigma }}\) are positive, in which case those of its inverse will be positive as well. Assuming that \({\varvec{{\varSigma }}}\) is a positive definite matrix, then all its eigenvalues, named \({{\lambda }}_{1}, {{\lambda }}_{{2}},\ldots ,{{\lambda }}_{{p}}\), are positive. On the other hand, matrix \({\varvec{{\varSigma }}}_{{\varvec{Y}}}\) is also positive definite. In fact, let \({\varvec{{\varSigma }}}={\varvec{U} \varvec{DU}}^{'}\) be the spectral decomposition of \(\varvec{{\varSigma }}\), where \({\varvec{U}}=\left( {\varvec{u}}_{\varvec{1}}, {\varvec{u}}_{\varvec{2}},\ldots , {\varvec{u}}_{\varvec{p}}\right) \) and \({\varvec{u}}_{\varvec{i}}\) is the ith eigenvector associated with the ith eigenvalue \({{\lambda }}_{{i}}\). Being \({{\sigma }}_{{G}}^{{2}}>{{0}}\), let rewrite \({{\lambda }}_{{i}}\) as \({{\lambda }}_{{i}}^{{*}}-{{\sigma }}_{{G}}^{{2}}\). Then

$$\begin{aligned} \begin{aligned} \left( {\varvec{{\varSigma }}}-\left( {{\lambda }}_{{i}}^{*}-\sigma _G^2\right) {\varvec{I}}\right) {\varvec{u}}_{{\varvec{i}}}&=0 \ \Rightarrow \ \left( {\varvec{{\varSigma }}}+{{\sigma }}_{{G}}^{{2}}\ {\varvec{I}}\ -{{\lambda }}_{{i}}^{*}\ {\varvec{I}}\right) {\varvec{u}}_{{\varvec{i}}}=0 \\&\Rightarrow \left( {\varvec{{\varSigma }}}_{{\varvec{Y}}} -{{\lambda }}_{{i}}^{*}\ {\varvec{I}}\right) {\varvec{u}}_{{\varvec{i}}}=0 \end{aligned} \end{aligned}$$
(24)

Hence, \({{\lambda }}_{{i}}^{*}\) are the eigenvalues of \({\varvec{{\varSigma }}}_{{\varvec{Y}}}\). Since they are obtained from the eigenvalues of the matrix \({\varvec{{\varSigma }}}\) as \({{\lambda }}_{{i}}^{*}={{\lambda }}_{{i}}+{{\sigma }}_{{G}}^{{2}}\), they result positive. Moreover, from (24) it also result that \({\varvec{{\varSigma }}}\) and \({\varvec{{\varSigma }}}_{{\varvec{Y}}}\) have the same eigenvectors, \({\varvec{u}}_i\). In summary, \({\varvec{{\varSigma }}}\) and \({\varvec{{\varSigma }}}_{{\varvec{Y}}}\) are both positive definite and they have common eigenvectors.

It remains to see if the product between themselves is also definite positive. In general, given two matrices \({\varvec{A}}\) and \({\varvec{B}}\) there is no relationship between the eigenvalues of A B and those of \({\varvec{A}}\) and \({\varvec{B}}\), unless both matrices have the same eigenvectors. In such case, being \({{\lambda }}_{{i}}\) and \({{\lambda }}_{{i}}^{*}\) eigenvalues of \({\varvec{{\varSigma }}}\) and \({\varvec{{\varSigma }}}_{\varvec{Y}}\), respectively, both associated to the same eigenvector \({\varvec{u}}_{{\varvec{i}}}\), then \({{\lambda }}_{{i}} {{\lambda }}_{{i}}^{*}\) is eigenvalue of \({\varvec{{\varSigma }}}{\varvec{{\varSigma }}}_{{\varvec{Y}}}\). In fact:

$$\begin{aligned} {\varvec{{\varSigma }}}_{{\varvec{Y}}} {\varvec{{\varSigma }}} {{\varvec{u}}}_{{\varvec{i}}}={\varvec{{\varSigma }}}_{{\varvec{Y}}} \left( {{\lambda }}_{{i}} {\varvec{u}}_{{\varvec{i}}}\right) ={{\lambda }}_{{i}} \left( {\varvec{{\varSigma }}}_{{\varvec{Y}}} {{\varvec{u}}}_{{\varvec{i}}}\right) = {{\lambda }}_{{i}} {{\lambda }}_{{i}}^{*} {\varvec{u}}_{{\varvec{i}}} \end{aligned}$$
(25)

This implies that the eigenvalues of \({\varvec{{\varSigma }}}_{{\varvec{Y}}} {\varvec{{\varSigma }}}\) can be obtained as the product of those of \({\varvec{{\varSigma }}}_{{\varvec{Y}}}\) and \({\varvec{{\varSigma }}}\). Therefore, they are all positive, and hence so are those of the inverse of \({\varvec{{\varSigma }}}_{{\varvec{Y}}} {\varvec{{\varSigma }}}\). From all this matrix in (22) is positive definite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dianda, D.F., Quaglino, M.B. & Pagura, J.A. Impact of measurement errors on the performance and distributional properties of the multivariate capability index \(\mathbf{NMC }_\mathbf{pm }\) . AStA Adv Stat Anal 102, 117–143 (2018). https://doi.org/10.1007/s10182-017-0295-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-017-0295-2

Keywords

Navigation