Skip to main content

Advertisement

Log in

Prediction model-based kernel density estimation when group membership is subject to missing

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

The density function is a fundamental concept in data analysis. When a population consists of heterogeneous subjects, it is often of great interest to estimate the density functions of the subpopulations. Nonparametric methods such as kernel smoothing estimates may be applied to each subpopulation to estimate the density functions if there are no missing values. In situations where the membership for a subpopulation is missing, kernel smoothing estimates using only subjects with membership available are valid only under missing complete at random (MCAR). In this paper, we propose new kernel smoothing methods for density function estimates by applying prediction models of the membership under the missing at random (MAR) assumption. The asymptotic properties of the new estimates are developed, and simulation studies and a real study in mental health are used to illustrate the performance of the new estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonzo, T.A., Pepe, M.S.: Assessing accuracy of a continuous screening test in the presence of verification bias. J. R. Stat. Soc. Ser. C 54, 173–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Alonzo, T.A., Pepe, M.S., Lumley, T.: Estimating disease prevalence in two-phase studies. Biostatistics 4, 313–326 (2003)

    Article  MATH  Google Scholar 

  • Begg, C.B., Greenes, R.A.: Assessment of diagnostic tests when disease verification is subject to selection bias. Biometrics 39, 207–215 (1983)

    Article  MathSciNet  Google Scholar 

  • Chaudron, L., Szilagyi, P., Tang, W., Anson, E., Talbot, N., Wadkins, H., Tu, X., Wisner, K.: Accuracy of depression screening tools for identifying postpartum depression among urban mothers. Pediatrics 125(3), e609–e617 (2010)

    Article  Google Scholar 

  • He, H., Lyness, J.M., McDermott, M.P.: Direct estimation of the area under the receiver operating characteristic curve in the presence of verification bias. Stat. Med. 28(3), 361–376 (2009)

    Article  MathSciNet  Google Scholar 

  • He, H., McDermott, M.: A robust method for correcting verification bias for binary tests. Biostatistics 13(1), 32–47 (2012)

    Article  MATH  Google Scholar 

  • Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  • Linn, B.S., Linn, M.W., Gurel, L.: Cumulative illness rating scale. J. Am. Geriatr. Soc. 16, 622–626 (1968)

    Article  Google Scholar 

  • Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  • Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  • Pepe, M.S., Reilly, M., Fleming, T.R.: Auxiliary outcome data and the mean score method. J. Stat. Plan. Inference 42, 137–160 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Reilly, M., Pepe, M.S.: A mean score method for missing and auxiliary covariate data in regression models. Biometrika 82, 299–314 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Simonoff, J.S.: Smoothing Methods in Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  • Spitzer, R.L., Gibbon, M., Williams, J.B.W.: Structured Clinical Interview for Axis I DSM-IV Disorders. Biometrics Research Department, New York State Psychiatric Institute (1994)

  • Tang, W., He, H., Gunzler, D.: Kernel smoothing density estimation when group membership is subject to missing. J. Stat. Plan. Inference 142(3), 685–694 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Wand, M.P., Jones, M.C.: Kernel Smoothing, Volume 60 of Monographs on Statistics and Applied Probability. Chapman and Hall Ltd., London (1995)

    Book  Google Scholar 

  • Wang, Q.: Probability density estimation with data missing at random when covariables are present. J. Statist. Plann. Inference 138(3), 568–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • White, H.: Maximum likelihood estimation of misspecified models. Econometrica 50(1), 1–25 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NIH Grants R33 DA027521 and R01GM108337. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would also like to thank Jeffrey M. Lyness, M.D. for providing the data used in Sect. 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Tang.

Appendix

Appendix

In this appendix, we give proofs for Theorem 14.

Proof of Theorem 1

We first show the asymptotic distribution of \(\widetilde{f}_{{\text {MS}}}(t;h)\) in Theorem 1 (a). Let \(u_{i}=D_{i}R_{i}+d_{i}(1-R_{i})\) and \(f_{h}(t)=E\left[ K_{h}(t-T_{i})\mid D_{i}=1\right] \), as defined in (3.3), based on (3.1), we have

$$\begin{aligned}&\sqrt{n}\left[ \widetilde{f}_{MS}(t;h)-f_{h}(t)\right] =\sqrt{n}\left[ \frac{\frac{1}{n}\sum {}_{i=1}^{n}{u}_{i}K_{h}(t-T_{i})}{\frac{1}{n}\sum {}_{i=1}^{n}{u}_{i}}-f_{h}(t)\right] \nonumber \\&=\sqrt{n}\left[ \frac{\frac{1}{n}\sum {}_{i=1}^{n}{u}_{i}K_{h}(t-T_{i} )}{\frac{1}{n}\sum {}_{i=1}^{n}{u}_{i}}-\frac{\frac{1}{n}\sum {}_{i=1}^{n} {u}_{i}K_{h}(t-T_{i})}{p}+\frac{\frac{1}{n}\sum {}_{i=1}^{n}{u}_{i} K_{h}(t-T_{i})}{p}-f_{h}(t)\right] \nonumber \\&=\frac{1}{p}\frac{1}{\sqrt{n}}\left[ \frac{\sum {}_{i=1}^{n}{u}_{i} K_{h}(t-T_{i})}{\sum {}_{i=1}^{n}{u}_{i}}\sum \limits _{i=1}^{n}\left( p-{u} _{i}\right) +\sum \limits _{i=1}^{n}\left[ {u}_{i}K_{h}(t-T_{i})-pf_{h}(t)\right] \right] . \end{aligned}$$
(7.1)

For any given h,  at point t,  as \(n\rightarrow \infty \) ,  by the Weak Law of Large Numbers (WLLN), we have

$$\begin{aligned} \frac{\sum {}_{i=1}^{n}{u}_{i}K_{h}(t-T_{i})}{\sum {}_{i=1}^{n}{u}_{i} }\rightarrow f_{h}(t). \end{aligned}$$
(7.2)

By the Central Limit Theory (CLT), we have

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\left( p-{u}_{i}\right) \rightarrow N(0,Var({u}_{i})) \end{aligned}$$
(7.3)

and

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\left[ {u}_{i}K_{h}(t-T_{i})-pf_{h} (t)\right] \rightarrow N(0,Var({u}_{i}K_{h}(t-T_{i}))). \end{aligned}$$
(7.4)

By applying Slutsky’s theorem and with the consideration of the correlation between (7.3) and (7.4), we have

$$\begin{aligned} \sqrt{n}\left[ \widetilde{f}_{{\text {MS}}}(t;h)-f_{h}(t)\right] \rightarrow N(0,\sigma _{1}^{2}), \end{aligned}$$

where \(\sigma _{1}^{2}=\frac{1}{p^{2}}Var\left( {u}_{i}K_{h}(t-T_{i})-{u} _{i}f_{h}(t)\right) \). The asymptotic distribution of \(\widetilde{f} _{{\text {MS}}}(t;h)\) in Theorem 1(a) has been proved.

Replacing \(u_{i}=D_{i}R_{i}+d_{i}(1-R_{i})\ \) by \(u_{i}=d_{i}\), and applying a similar argument for the proof of Theorem 1 (a), we can prove Theorem 1 (b). \(\square \)

Proof of Theorem 2

Let f(t) be the density function for the diseased population, and let \(z_{i}=\left( T_{i}-t\right) /h,\) then

$$\begin{aligned} Bias\left[ \widetilde{f}_{{\text {MS}}}(t;h)\right]&=E\left[ \widetilde{f} _{{\text {MS}}}(t;h)-f(t)\right] \nonumber \\&=E\left[ \widetilde{f}_{{\text {MS}}}(t;h)-f_{h}(t)+f_{h}(t)-f(t)\right] \nonumber \\&=E\left[ \widetilde{f}_{{\text {MS}}}(t;h)-f_{h}(t)\right] +E\left[ f_{h} (t)-f(t)\right] . \end{aligned}$$
(7.5)

Based on Theorem 1, we have

$$\begin{aligned} E\left[ \widetilde{f}_{{\text {MS}}}(t;h)-f_{h}(t)\right] =0\text { as } n\rightarrow \infty . \end{aligned}$$

Since both \(f_{h}(t)\) and f(t) are defined for the diseased population, we have

$$\begin{aligned} f_{h}(t)-f(t)&=\int K_{h}(T_{i}-t)f(T_{i})dT_{i}-f(t)\nonumber \\&=\int \frac{1}{h}K(z_{i})f(t+hz_{i})hdz_{i}-f(t)\nonumber \\&=\int K(z_{i})\left[ f(t)+f^{\prime }(t)hz_{i}+\frac{1}{2}f^{\prime \prime }(t)h^{2}z_{i}^{2}+o(h^{2})\right] dz_{i}-f(t)\nonumber \\&=\frac{1}{2}h^{2}\mu _{2}(K)f^{\prime \prime }(t)+o(h^{2}). \end{aligned}$$
(7.6)

Combining (7.5) and (7.6), we have \(Bias\left[ \widetilde{f}_{{\text {MS}}}(t;h)\right] =\frac{1}{2}h^{2}\mu _{2}(K)f^{\prime \prime } (t)+o(h^{2}).\)

Next, we derive the variance of \(\widetilde{f}_{MS}(t;h).\) Let \(w(t)=E\big ( \pi _{i}d_{i}+d_{i}^{2}(1-\pi _{i})\mid T_{i}=t\big )\), \(z_{i}=\left( T_{i}-t\right) /h\) and g(t) be the population density function of T. Based on Theorem 1, the asymptotic variance for \(\widetilde{f} _{{\text {MS}}}(t)\) is

$$\begin{aligned} Var(\widetilde{f}_{{\text {MS}}}(t))&=\frac{1}{np^{2}}Var\left[ \left( K_{h} (t-T_{i})-f_{h}(t)\right) \left( D_{i}R_{i}+d_{i}(1-R_{i})\right) \right] \\&=\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) \left( D_{i}R_{i}+d_{i}(1-R_{i})\right) \right] ^{2}\\&=\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}\left( D_{i}R_{i}+d_{i}^{2}(1-R_{i})\right) \right] \\&=\frac{1}{np^{2}}E\left\{ E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}\left( D_{i}R_{i}+d_{i}^{2}(1-R_{i})\right) \mid T_{i}=t,x_{i}=x\right] \right\} \\&=\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}\left( \pi _{i}d_{i}+d_{i}^{2}(1-\pi _{i})\right) \right] \\&=\frac{1}{np^{2}}E\left\{ E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}\left( \pi _{i}d_{i}+d_{i}^{2}(1-\pi _{i})\right) \mid T_{i}=t\right] \right\} \\&=\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}w(T_{i})\right] ,\\&=\frac{1}{np^{2}}\int \left( \frac{1}{h^{2}}K^{2}(z_{i})+o\left( \frac{1}{h^{2} }\right) \right) w(t+hz_{i})g(t+hz_{i})hdz_{i}\\&=\frac{g(t)w(t)}{nhp^{2}}\int K^{2}(z_{i})dz_{i}+o\left( \frac{1}{nh}\right) \\&=\frac{g(t)w(t)}{nhp^{2}}\int K^{2}(z_{i})dz_{i}+o\left( \frac{1}{nh}\right) . \end{aligned}$$

Hence, the asymptotic variance of \(\widetilde{f}_{{\text {MS}}}(t)\) is

$$\begin{aligned} \frac{g(t)R(K)}{nhp^{2}}E\left[ d_{i}^{2}+\pi _{i}(d_{i}-d_{i}^{2})\mid T_{i}=t\right] +o\left( \frac{1}{nh}\right) ,\text { with }R(K)=\int K^{2}(t)dt. \end{aligned}$$

Let \(w(t)=E\left( d_{i}^{2}\mid T_{i}=t\right) .\) Based on Theorem 1, with a similar argument, the asymptotic variance for \(\widetilde{f}_{BG}(t)\) can be derived as below:

$$\begin{aligned}&\frac{1}{np^{2}}Var\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) d_{i}\right] \\&\quad =\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2} d_{i}^{2}\right] \\&\quad =\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}w(T_{i})\right] \\&\quad =\frac{g(t)R(K)}{np^{2}}E\left[ d_{i}^{2}\mid T_{i}=t\right] +o\left( \frac{1}{nh}\right) . \end{aligned}$$

\(\square \)

Proof of Theorem 3

We first show the asymptotic distribution of in Theorem 3 (a). Suppose we have a prediction model (3.8) and the parameters are estimated from (3.9). Let \(\widehat{{\beta }}\) be the estimate of \(\beta \). Based on the Taylor expansion of (3.9) at \(\beta \), we have

$$\begin{aligned} \widehat{{\beta }}-{\beta }=\frac{1}{n}\mathbf {I}^{-1}\sum \limits _{i=1}^{n}\Psi i+o\left( \frac{1}{n}\right) , \end{aligned}$$

where \(\mathbf {I=-}E[\frac{\partial \Psi _{i}}{\partial {\beta }^{T}}].\) If \(\widehat{{\beta }}\) are estimated from the score equation, \(\mathbf {I}\) is the Fisher information matrix.

Since

the asymptotic distribution of \(\sqrt{n}\left[ \widetilde{f}_{{\text {MS}}} (t)-f_{h}(t)\right] \) is already given in Theorem 1(a). We will focus on deriving the asymptotic distribution of \(\sqrt{n}\left[ \widehat{f}_{{\text {MS}}}(t)-\widetilde{f}_{{\text {MS}}}(t)\right] \).

Let \(\widehat{u}_{i}=D_{i}R_{i}+\widehat{d}_{i}(1-R_{i})=D_{i}R_{i} +g(x_{i};\widehat{{\beta }})(1-R_{i}).\) Based on (3.10) and (3.1), by applying WLLE, we have

The second term

$$\begin{aligned} II= & {} \frac{1}{\sqrt{n}p}\sum \limits _{i=1}^{n}K_{h}(t-T_{i})\left( \widehat{u}_{i}-{u}_{i}\right) \\= & {} \frac{1}{\sqrt{n}p}\sum \limits _{i=1}^{n}K_{h}(t-T_{i})\left[ \frac{\partial u_{i}}{\partial {\beta }^{T}}(\widehat{{\beta }}-\mathbf {\beta })+o(\frac{1}{n})\right] \\= & {} \frac{1}{n}\left[ \sum \limits _{i=1}^{n}K_{h}(t-T_{i})\frac{\partial u_{i} }{\partial {\beta }^{T}}\right] \frac{\sqrt{n}}{p}(\widehat{{\beta }}-{\beta })+o(1)\\= & {} E\left( K_{h}(t-T_{i})\frac{\partial u_{i}}{\partial {\beta }^{T} }\right) \frac{\mathbf {I}^{-1}}{\sqrt{n}p}\sum \limits _{i=1}^{n}\Psi i+o(1), \end{aligned}$$

where \(\mathbf {I}=-E[\frac{\partial \Psi _{i}}{\partial {\beta }^{T}}]\).

For the first term, by Slutsky’s theorem,

$$\begin{aligned} \frac{1}{\frac{1}{n}\Sigma _{i=1}^{n}\widehat{u}_{i}}-\frac{1}{\frac{1}{n}\Sigma _{i=1}^{n}u_{i}}=-\frac{1}{p^{2}}E\left[ \frac{\partial u_{i} }{\partial {\beta }^{T}}({\beta })\right] (\widehat{{\beta }}-{\beta })+o(1). \end{aligned}$$

Thus,

$$\begin{aligned} I&=\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\frac{1}{n}\Sigma _{i=1}^{n} \widehat{u}_{i}K_{h}(t-T_{i})\left[ \frac{1}{\frac{1}{n}\Sigma _{i=1} ^{n}\widehat{u}_{i}}-\frac{1}{\frac{1}{n}\Sigma _{i=1}^{n}u_{i}}\right] \\&=\frac{1}{\sqrt{n}}\sum \limits _{i=1}^{n}\left[ (u_{i}+\frac{\partial u_{i} }{\partial {\beta }^{T}}(\widehat{{\beta }}-{\beta } ))K_{h}(t-T_{i})\right] \\&\quad \times \left( -\frac{1}{p^{2}}E\left[ \frac{\partial u_{i}}{\partial {\beta }^{T}}({\beta })\right] (\widehat{{\beta }}-{\beta })\right) +o(1)\\&=-\frac{f_{h}(t)}{p}E\left[ \frac{\partial u_{i}}{\partial \mathbf {\beta }^{T}}({\beta })\right] \sqrt{n}(\widehat{{\beta }} -{\beta })+o(1)\\&=-\frac{f_{h}(t)}{p}E\left[ \frac{\partial u_{i}}{\partial \mathbf {\beta }^{T}}({\beta })\right] \frac{1}{\sqrt{n}}\mathbf {I}^{-1}\sum \limits _{i=1}^{n}\Psi i+o(1). \end{aligned}$$

It follows that

where \(\sigma _{3}^{2}=\frac{1}{p^{2}}Var\big ( {u}_{i}K_{h}(t-T_{i} )-f_{h}(t){u}_{i}+\big ( E\left( K_{h}(t-T_{i})\frac{\partial u_{i} }{\partial {\beta }^{T}}\right) -f_{h}(t)E\big ( \frac{\partial u_{i} }{\partial {\beta }^{T}}\big ) \big ) \mathbf {I}^{-1}\Psi i\big ) \). Let \(\mathbf {c}=E\left[ K_{h}(t-T_{i})(1-R_{i})\frac{\partial g_{i} }{\partial {\beta }^{T}}({\beta })\right] \) and \(\mathbf {d} =E\left[ \!(1-R_{i})\frac{\partial g_{i}}{\partial {\beta }^{T} }({\beta })\!\right] .\) Since \(\frac{\partial u_{i}}{\partial {\beta }^{T}}=(1-R_{i})\frac{\partial g_{i}}{\partial {\beta }^{T} },\) we have

$$\begin{aligned} \sigma _{3}^{2}=\frac{1}{p^{2}}Var\left\{ u_{i}\left[ K_{h}(t-T_{i} )-f_{h}(t)\right] +\left( \mathbf {c}-f_{h}(t)\mathbf {d}\right) \mathbf {e}^{-1}\Psi _{i}\right\} . \end{aligned}$$

Theorem 3(b) can be proved similarly by replacing \(u_{i}\) by \(d_{i}\) and \(\widehat{u}_{i}\) by \(\widehat{d}_{i}\) in the above arguments. \(\square \)

Proof of Theorem 4

Based on Theorem 3, the asymptotic bias for both and is \(f_{h}(t)-f(t).\) Thus, the bias follows from the proof of Theorem 2.

The proof for the asymptotic variance also follows similarly to that of Theorem 2:

Let \(w(t)=E\left[ \pi _{i}d_{i}+d_{i}^{2}(1-\pi _{i})\mid T_{i}=t\right] ,\) \(w_{1}(t)=E\big \{ u_{i}\left( \mathbf {c}-f_{h}(t)\mathbf {d}\right) \mathbf {e}^{-1}\Psi _{i}\mid T_{i}=t\big \} \), and \(w_{2}(T_{i})=E\left[ (\left( \mathbf {c}-f_{h}(t)\mathbf {d}\right) \mathbf {e}^{-1}\Psi _{i} )^{2}\right] .\) Based on Theorem 3, the asymptotic variance for can be derived as below:

$$\begin{aligned}&\frac{1}{np^{2}}Var\left[ u_{i}\left( K_{h}(t-T_{i})-f_{h}(t)\right) +\left( \mathbf {c}-f_{h}(t)\mathbf {d}\right) \mathbf {e}^{-1}\Psi _{i}\right] \\&=\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) \left( D_{i}R_{i}+d_{i}(1-R_{i})\right) +\left( \mathbf {c}-f_{h}(t)\mathbf {d} \right) \mathbf {e}^{-1}\Psi _{i}\right] ^{2}\\&=\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}\left( D_{i}R_{i}+d_{i}^{2}(1-R_{i})\right) \right. \\&\quad \left. +2\left( K_{h}(t-T_{i})-f_{h}(t)\right) \left( D_{i}R_{i} +d_{i}(1-R_{i})\right) \left( \mathbf {c}-f_{h}(t)\mathbf {d}\right) \mathbf {e}^{-1}\Psi _{i}\right. \\&\quad \left. +(\left( \mathbf {c}-f_{h}(t)\mathbf {d}\right) \mathbf {e}^{-1}\Psi _{i})^{2}\right] \\&=\frac{1}{np^{2}}E\left[ \left( K_{h}(t-T_{i})-f_{h}(t)\right) ^{2}w(T_{i})+2\left( K_{h}(t-T_{i})-f_{h}(t)\right) w_{1}(T_{i})+w_{2} (T_{i})\right] \\&=\frac{1}{np^{2}}\int \left( \frac{1}{h^{2}}K^{2}(z_{i})\right) w(t+hz_{i})g(t+hz_{i})hdz_{i}+o\left( \frac{1}{nh}\right) \\&=\frac{g(t)w(t)}{nhp^{2}}\int K^{2}(z_{i})dz_{i}+o\left( \frac{1}{nh}\right) . \end{aligned}$$

Hence, the asymptotic variance of is

$$\begin{aligned} \frac{g(t)R(K)}{nhp^{2}}E\left[ d_{i}^{2}+\pi _{i}(d_{i}-d_{i}^{2})\mid T_{i}=t\right] +o\left( \frac{1}{nh}\right) ,\text { where }R(K)=\int K^{2}(t)dt. \end{aligned}$$

Similarly, we can prove the asymptotic variance of in (3.16). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Wang, W. & Tang, W. Prediction model-based kernel density estimation when group membership is subject to missing. AStA Adv Stat Anal 101, 267–288 (2017). https://doi.org/10.1007/s10182-016-0283-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-016-0283-y

Keywords

Navigation