Skip to main content

Advertisement

Log in

Thermodynamic analysis of metals recycling out of waste printed circuit board through secondary copper smelting

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this paper, a detailed thermodynamic analysis of processing of electronic waste (e-waste), particularly printed circuit boards (PCB), through secondary copper recycling (black copper smelting), was carried out. The mass balance flowsheets of two scenarios, i.e., the case of secondary copper recycling with (SCE1) and without (SCE2) addition of PCBs, have been developed and compared. From the perspective of recovery of copper (Cu), gold (Au), and silver (Ag); the thermodynamic analysis predicted that the process conditions at temperature of 1300 °C and oxygen partial pressure (pO2) of 10–8 atm are suitable for PCB processing through secondary copper smelting route. Under these conditions, no solid phases were predicted to form when the PCB addition is below 50 wt%. High PCB addition was predicted to produce high volume of slag in the process and more pollutants in the gas phase (Br-based gaseous compounds). The chemistry of the slag was also predicted to change that is shifting the liquidus temperature to a higher value due to the presence of aluminium (Al), silica (SiO2), and titanium dioxide (TiO2) in the feed coming from the PCB. The carbon content of the PCB potentially supplies additional heat and reductant (CO) in the process hence can partially replace coke in the feed material. The predicted recoveries of copper (Cu), gold (Au), and silver (Ag) from e-waste were 83.3, 96.5, and 88.5 wt% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Xue M, Kendall A, Xu Z, Schoenung JM (2015) Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining. Environ Sci Technol 49:940–947. doi:10.1021/es504750q

    Article  Google Scholar 

  2. Heacock M, Kelly CB, Suk WA (2016) E-waste: the growing global problem and next steps. Rev Environ Health 31:131–135

    Article  Google Scholar 

  3. Davenport WGL, King M, Schlesinger M, Biswas AK (2002) Extractive metallurgy of copper. Pergamon Press, Oxford

  4. Institute of Scrap Recycling Industries (ISRI) (2003) Scrap recycling: where tomorrow begins. ISRI, Washington, DC, pp 16–24

    Google Scholar 

  5. Anindya A, Swinbourne DR, Reuter MA, Matusewicz RW (2013) Distribution of elements between copper and FeO x –CaO–SiO2 slags during pyrometallurgical processing of WEEE. Miner Process Extr Metall 122:165–173. doi:10.1179/1743285513Y.0000000043

    Article  Google Scholar 

  6. Hoffmann JE, n.d. Recovering precious metals from electronic scrap. JOM 44:43–48. doi:10.1007/BF03222275

  7. Sun J, Wang W, Liu Z, Ma C (2011) Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing. Ind Eng Chem Res 50:11763–11769. doi:10.1021/ie2013407

    Article  Google Scholar 

  8. Ghodrat M, Rhamdhani MA, Brooks G, Masood S, Corder G (2016) Techno economic analysis of electronic waste processing through black copper smelting route. J Clean Prod. doi:10.1016/j.jclepro.2016.03.033

    Google Scholar 

  9. Davis G, Herat S (2008) Electronic waste: The local government perspective in Queensland, Australia. Resour. Conserv. Recycl 52:1031–1039. doi:10.1016/j.resconrec.2008.04.001

    Article  Google Scholar 

  10. Golev A, Schmeda-Lopez DR, Smart SK, Corder GD, McFarland EW (2016) Where next on e-waste in Australia? Waste Manag 58:348–358. doi:10.1016/j.wasman.2016.09.025

    Article  Google Scholar 

  11. EEA (2013) Managing municipal solid waste—a review of achievements in 32 European countries. EEA Report No 2/2013, European Environment Agency

  12. Randell P, Pickin J, Grant B, (2014) Waste Generation and Resource Recovery in Australia. Blue Environment Pty Ltd; Department of Sustainability, Environment, Water, Population and Communities. http://www.environment.gov.au/resource/waste-generation-and-resource-recovery-australia-report-anddata-workbooks. Available online.

  13. Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3:152–179. doi:10.3390/resources3010152

  14. Nakajima K, Takeda O, Miki T, Matsubae K, Nakamura S, Nagasaka T (2010) Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ Sci Technol 44:5594–5600. doi:10.1021/es9038769

    Article  Google Scholar 

  15. Castro MBG, Remmerswaal JAM, Reuter MA, Boin UJM (2004) A thermodynamic approach to the compatibility of materials combinations for recycling. Resour Conserv Recycl 43:1–19. doi:10.1016/j.resconrec.2004.04.011

    Article  Google Scholar 

  16. Worrel E, Reuter MA (2014) Handbook of recycling. Elsevier BV, Amsterdam, 595 p

  17. Recalde K, Wang J, Graedel TE (2008) Aluminium in-use stocks in the state of Connecticut. Resour Conserv Recycl 52:1271–1282. doi:10.1016/j.resconrec.2008.07.006

    Article  Google Scholar 

  18. Nakajima K, Yokoyama K, Nagasaka T (2008) Substance flow analysis of manganese associated with iron and steel flow in Japan. ISIJ Int 48:549–553. doi:10.2355/isijinternational.48.549

    Article  Google Scholar 

  19. Wang T, Müller DB, Graedel TE (2007) Forging the anthropogenic iron cycle. Environ Sci Technol 41:5120–5129. doi:10.1021/es062761t

    Article  Google Scholar 

  20. Graedel TE, Bertram M, Kapur A, Reck B, Spatari S (2004) Exploratory data analysis of the multilevel anthropogenic copper cycle. Environ Sci Technol 38:1253–1261. doi:10.1021/es0304345

    Article  Google Scholar 

  21. Johnson J, Schewel L, Graedel TE (2006) The contemporary anthropogenic chromium cycle. Environ Sci Technol 40:7060–7069. doi:10.1021/es060061i

    Article  Google Scholar 

  22. Ayres R, Talens Peiró L (2013) Material efficiency: rare and critical metals. Phil Trans R Soc A 371:20110563. doi:10.1098/rsta.2011.0563

  23. Wu Y, Yin X, Zhang Q, Wang W, Mu X (2014) The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resour Conserv Recycl 88:21–31. doi:10.1016/j.resconrec.2014.04.007

    Article  Google Scholar 

  24. Binnemans K, Jones PT (2014) Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J Rare Earths 32:195–200. doi:10.1016/S1002-0721(14)60051-X

    Article  Google Scholar 

  25. Van Eygen E, De Meester S, Tran HP, Dewulf J (2016) Resource savings by urban mining: the case of desktop and laptop computers in Belgium. Resour Conserv Recycl 107:53–64. doi:10.1016/j.resconrec.2015.10.032

    Article  Google Scholar 

  26. Oguchi M, Murakami S, Sakanakura H, Kida A, Kameya T (2011) A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Manag 31:2150–2160. doi:10.1016/j.wasman.2011.05.009

    Article  Google Scholar 

  27. Guo C, Wang H, Liang W, Fu J, Yi X (2011) Liberation characteristic and physical separation of printed circuit board (PCB). Waste Manag 31:2161–2166. doi:10.1016/j.wasman.2011.05.011

    Article  Google Scholar 

  28. Yamane LH, de Moraes VT, Espinosa DCR, Tenório JAS (2011) Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Manag 31:2553–2558. doi:10.1016/j.wasman.2011.07.006

    Article  Google Scholar 

  29. Li J, Lu H, Guo J, Xu Z, Zhou Y (2007) Recycle technology for recovering resources and products from waste printed circuit boards. Environ Sci Technol 41:1995–2000. doi:10.1021/es0618245

    Article  Google Scholar 

  30. Rath SS, Nayak P, Mukherjee PS, Roy Chaudhury G, Mishra BK (2012) Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching—a response surface modeling approach. Waste Manag 32:575–583. doi:10.1016/j.wasman.2011.11.001

    Article  Google Scholar 

  31. Bhat V, Rao P, Patil Y (2012) Development of an integrated model to recover precious metals from electronic scrap—a novel strategy for E-Waste management. Procedia Soc Behav Sci 37:397–406. doi:10.1016/j.sbspro.2012.03.305

    Article  Google Scholar 

  32. Syed S (2012) Recovery of gold from secondary sources—a review. Hydrometallurgy 115–116:30–51. doi:10.1016/j.hydromet.2011.12.012

    Article  Google Scholar 

  33. Kim E, Kim M, Lee J, Pandey BD (2011) Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J Hazard Mater 198:206–215. doi:10.1016/j.jhazmat.2011.10.034

    Article  Google Scholar 

  34. Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191. doi:10.1016/j.scitotenv.2009.09.044

    Article  Google Scholar 

  35. Sepúlveda A, Schluep M, Renaud FG, Streicher M, Kuehr R, Hagelüken C, Gerecke AC (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assess Rev 30:28–41. doi:10.1016/j.eiar.2009.04.001

    Article  Google Scholar 

  36. Frazzoli C, Orisakwe OE, Dragone R, Mantovani A (2010) Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios. Environ Impact Assess Rev 30:388–399. doi:10.1016/j.eiar.2009.12.004

    Article  Google Scholar 

  37. Xing GH, Chan JKY, Leung AOW, Wu SC, Wong MH (2009) Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int 35:76–82. doi:10.1016/j.envint.2008.07.025

    Article  Google Scholar 

  38. Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, Norman RE (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Glob Heal 1:e350–e361. doi:10.1016/S2214-109X(13)70101-3

  39. Barba-Gutiérrez Y, Adenso-Díaz B, Hopp M (2008) An analysis of some environmental consequences of European electrical and electronic waste regulation. Resour Conserv Recycl 52:481–495. doi:10.1016/j.resconrec.2007.06.002

    Article  Google Scholar 

  40. Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31:45–58. doi:10.1016/j.wasman.2010.08.014

    Article  Google Scholar 

  41. Yamasue E, Minamino R, Numata T, Nakajima K, Murakami S, Daigo I, Hashimoto S, Okumura H, Ishihara KN (2009) Novel evaluation method of elemental recyclability from urban mine—concept of urban ore TMR. Mater Trans 50:1536–1540. doi:10.2320/matertrans.MBW200816

    Article  Google Scholar 

  42. Agrawal A, Sahu KK (2010) Problems, prospects and current trends of copper recycling in India: an overview. Resour Conserv Recycl 54:401–416. doi:10.1016/j.resconrec.2009.09.005

    Article  Google Scholar 

  43. Kang HY, Schoenung JM (2005) Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour Conserv Recycl 45:368–400. doi:10.1016/j.resconrec.2005.06.001

    Article  Google Scholar 

  44. Anindya A, 2012. Minor Elements Distribution during the Smelting of WEEE with Copper Scrap. RMIT University

  45. Rentz O, Krippner M, Hähre S, Schultmann F (1999) Report on best available techniques (BAT) in copper production. Deutsch-Französisches Inst. für Umweltforsch. Univ. Karlsruhe (TH), Karlsruhe, Ger

  46. Nolte A (1997) Metallurgical utilization of reusable products from the recycling industry in a secondary copper smelter. In: EPD Congress 1997, pp 377–400

  47. Traulsen HR, Taylor JC, George DB (1982) Copper smelting—an overview. JOM 34:35–40. doi:10.1007/BF03338071

    Article  Google Scholar 

  48. Shuva MAH, Rhamdhani MA, Brooks GA, Masood S, Reuter MA (2016) Thermodynamics behaviour of Germanium during equilibrium reactions between FeO x –CaO–SiO2–MgO slag and molten copper. Metall Mater Trans B 47(5):2889–2903

    Article  Google Scholar 

  49. Shuva MAH, Rhamdhani MA, Brooks GA, Masood SH, Reuter MA (2016) Thermodynamics of palladium (Pd) and tantalum (Ta) relevant to secondary copper smelting. Metall Materi Trans B. doi:10.1007/s11663-016-0839-y

    Google Scholar 

  50. Shuva MAH, Rhamdhani MA, Brooks GA, Masood S, Reuter MA (2016) Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: a review. J Clean Prod 131:795–809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Ghodrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodrat, M., Rhamdhani, M.A., Khaliq, A. et al. Thermodynamic analysis of metals recycling out of waste printed circuit board through secondary copper smelting. J Mater Cycles Waste Manag 20, 386–401 (2018). https://doi.org/10.1007/s10163-017-0590-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-017-0590-8

Keywords

Navigation