Skip to main content

Advertisement

Log in

Soil contamination by halogenated polycyclic aromatic hydrocarbons from open burning of e-waste in Agbogbloshie (Accra, Ghana)

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Waste Prevention Researches
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Detailed composition of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl-PAHs and Br-PAHs) generated during informal recycling of e-waste and their toxic relevance are still poorly understood. This study investigated the occurrence of Cl-PAHs and Br-PAHs in surface soil samples from the Agbogbloshie e-waste recycling site (Accra, Ghana) using quantitative gas chromatography–mass spectrometry (GC–MS) and comprehensive two-dimensional GC–time-of-flight mass spectrometry (GC × GC–ToFMS) profiling. The results of GC–MS analysis showed elevated concentrations in open e-waste burning areas (160–220 and 19–46 ng/g dry weight for Cl- and Br-PAHs, respectively) with substantial contribution from unidentified compounds (respectively, more than 36 and 70%, based on the total areas of potential peaks). Cl- and Br-PAHs from e-waste burning had a distinctive composition dominated by ring–ring compounds. Several homologue groups not monitored with GC–MS were found using GC × GC–ToFMS: PAHs with up to 5Cl or 3Br, mixed halogenated PAHs and chlorinated methylPAHs. The dioxin-like toxic equivalents of the identified Cl-/Br-PAHs in soils, estimated from their in vitro AhR agonist potencies relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin, were much lower than the range reported for chlorinated and brominated dioxins. However, the toxicity of the unidentified halogenated PAHs remained unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Balde CP, Wang F, Kuehr R, Huisman J (2015) The global e-waste monitor—2014. United Nations University, IAW-SCYCLE, Bonn

    Google Scholar 

  2. Brigden K, Labunska I, Santillo D, Allsopp M (2005) Recycling of electronic wastes in China and India: workplace and environmental contamination. Greenpeace Research Laboratories, University of Exeter, UK. http://www.greenpeace.org/international/PageFiles/25134/recycling-of-electronic-waste.pdf. Accessed 20 Jul 2016

  3. Terazono A, Murakami S, Abe N, Inanc B, Moriguchi Y, Sakai S, Kojima M, Yoshida A, Li J, Yang J, Wong MH, Jain A, Kim I, Peralta G, Lin C, Mungcharoen T, Williams E (2006) Current status and research on e-waste issues in Asia. J Mater Cycles Waste Manag 8:1–12. doi:10.1007/s10163-005-0147-0

    Article  Google Scholar 

  4. Schluep M, Manhart A, Osibanjo O, Rochat D, Isarin N, Mueller E (2011) Where are WEee in Africa? Findings from the Basel Convention E-waste Africa Programme. http://www.basel.int/Portals/4/download.aspx?d=UNEP-CHW-EWASTE-PUB-WeeAfricaReport.English.pdf. Accessed 20 Jul 2016

  5. Amoyaw-Osei Y, Agyekum O, Pwamang J, Mueller E, Fasko R, Schluep M (2011) Ghana e-Waste Country Assessment. SBC e-Waste Africa Project. http://www.basel.int/Portals/4/Basel%20Convention/docs/eWaste/E-wasteAssessmentGhana.pdf. Accessed 20 Jul 2016

  6. Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191. doi:10.1016/j.scitotenv.2009.09.044

    Article  Google Scholar 

  7. Watson A, Bridgen K, Shinn M, Cobbing M (2010) Toxic transformers—a review of the hazards of brominated and chlorinated substances in electrical and electronic equipment. Greenpeace Research Laboratories, Technical Note 01/2010. http://www.greenpeace.to/publications/Toxic-Transformers-2010.pdf. Accessed 20 Jul 2016

  8. Chan JKY, Wong MH (2013) A review of environmental fate, body burdens, and human health risk assessment of PCDD/Fs at two typical electronic waste recycling sites in China. Sci Total Environ 463–464:1111–1123. doi:10.1016/j.scitotenv.2012.07.098

    Article  Google Scholar 

  9. Tue NM, Takahashi S, Subramanian A, Sakai S, Tanabe S (2013) Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries. Environ Sci Process Impacts 15:1326–1331. doi:10.1039/C3EM00086A

    Article  Google Scholar 

  10. Wang D, Xu X, Chu S, Zhang D (2003) Analysis and structure prediction of chlorinated polycyclic aromatic hydrocarbons released from combustion of polyvinylchloride. Chemosphere 53:495–503. doi:10.1016/S0045-6535(03)00507-1

    Article  Google Scholar 

  11. Nilsson UL, Östman CE (1993) Chlorinated polycyclic aromatic hydrocarbons: method of analysis and their occurrence in urban air. Environ Sci Technol 27:1826–1831. doi:10.1021/es00046a010

    Article  Google Scholar 

  12. Koistinen J, PaasivirtaJ Nevalainen T, Lahtiperä M (1994) Chlorinated fluorenes and alkylfluorenes in bleached kraft pulp and pulp mill discharges. Chemosphere 28:2139–2150. doi:10.1016/0045-6535(94)90182-1

    Article  Google Scholar 

  13. Grause G, Karakita D, Ishibashi J, Kameda T, Bhaskar T, Yoshioka T (2011) TG–MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Chemosphere 85:368–373. doi:10.1016/j.chemosphere.2011.06.104

    Article  Google Scholar 

  14. Yoshino H, Urano K (1997) Formation of chlorinated PAHs in exhaust gas from municipal waste incinerators, and their mutagenic activities. Toxicol Environ Chem 63:233–246. doi:10.1080/02772249709358533

    Article  Google Scholar 

  15. Horii Y, Ok G, Ohura T, Kannan K (2008) Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators. Environ Sci Technol 42:1904–1909. doi:10.1021/es703001f

    Article  Google Scholar 

  16. Ohura T, Morita M, Makino M, Amagai T, Shimoi K (2007) Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons. Chem Res Toxicol 20:1237–1241. doi:10.1021/tx700148b

    Article  Google Scholar 

  17. Horii Y, Khim JS, Higley EB, Giesy JP, Ohura T, Kannan K (2009) Relative potencies of individual chlorinated and brominated polycyclic aromatic hydrocarbons for induction of aryl hydrocarbon receptor-mediated responses. Environ Sci Technol 43:2159–2165. doi:10.1021/es8030402

    Article  Google Scholar 

  18. Ma J, Horii Y, Cheng J, Wang W, Wu Q, Ohura T, Kannan K (2009) Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China. Environ Sci Technol 43:643–649. doi:10.1021/es802878w

    Article  Google Scholar 

  19. Ieda T, Ochiai N, Miyawaki T, Ohura T, Horii Y (2011) Environmental analysis of chlorinated and brominated polycyclic aromatic hydrocarbons by comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry. J Chromatogr A 1218:3224–3232. doi:10.1016/j.chroma.2011.01.013

    Article  Google Scholar 

  20. Tue NM, Goto A, Takahashi S, Itai T, Asante KA, Kunisue T, Tanabe S (2016) Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). J Hazard Mater 302:151–157. doi:10.1016/j.jhazmat.2015.09.062

    Article  Google Scholar 

  21. Itai T, Otsuka M, Asante KA, Muto M, Opoku-Ankomah Y, Ansa-Asare OD, Tanabe S (2014) Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana. Sci Total Environ 470–471:707–716. doi:10.1016/j.scitotenv.2013.10.037

    Article  Google Scholar 

  22. Tue NM, Suzuki G, Takahashi S, Isobe T, Trang PTK, Viet PH, Tanabe S (2010) Evaluation of dioxin-like activities in settled house dust from Vietnamese e-waste recycling sites: relevance of polychlorinated/brominated dibenzo-p-dioxin/furans and dioxin-like PCBs. Environ Sci Technol 44:9195–9200. doi:10.1021/es102505j

    Article  Google Scholar 

  23. Tuyen LH, Tue NM, Suzuki G, Misaki K, Viet PH, Takahashi S, Tanabe S (2014) Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi—Vietnam: contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment. Sci Total Environ 491–492:246–254. doi:10.1016/j.scitotenv.2014.01.086

    Article  Google Scholar 

  24. Horii Y, Ohura T, Yamashita N, Kannan K (2009) Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the US. Arch Environ Contam Toxicol 57:651–660. doi:10.1007/s00244-009-9372-1

    Article  Google Scholar 

  25. Ni HG, Zeng EY (2012) Environmental and human exposure to soil chlorinated and brominated polycyclic aromatic hydrocarbons in an urbanized region. Environ Toxicol Chem 31:1494–1500. doi:10.1002/etc.1854

    Article  Google Scholar 

  26. Ma J, Zheng J, Chen Z, Wu M, Horii Y, Ohura T, Kannan K (2012) Chlorinated polycyclic aromatic hydrocarbons in urban surface dust and soil of Shanghai, China. Adv Mat Res 610–613:2989–2994. doi:10.4028/www.scientific.net/AMR.610-613.2989

    Article  Google Scholar 

  27. Ohura T, Fujima S, Amagai T, Shinomiya M (2008) Chlorinated polycyclic aromatic hydrocarbons in the atmosphere: seasonal levels, gas–particle partitioning, and origin. Environ Sci Technol 42:3296–3302. doi:10.1021/es703068n

    Article  Google Scholar 

  28. Ma J, Chen Z, Wu M, Feng J, Horii Y, Ohura T, Kannan K (2013) Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai, China. Environ Sci Technol 47:7615–7623. doi:10.021/es400338h

    Article  Google Scholar 

  29. Ohura T, Sawada K, Amagai T, Shinomiya M (2009) Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and AhR activity. Environ Sci Technol 43:2269–2275. doi:10.1021/es803633d

    Article  Google Scholar 

  30. Tuyen LH, Tue NM, Takahashi S, Suzuki G, Viet PH, Subramanian A, Bulbule KA, Parthasarathy P, Ramanathan A, Tanabe S (2014) Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ Pollut 194:272–280. doi:10.1016/j.envpol.2014.07.029

    Article  Google Scholar 

  31. van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, Fiedler H, Hakansson H, Hanberg A, Haws L, Rose M, Safe S, Schrenk D, Tohyama C, Tritscher A, Tuomisto J, Tysklind M, Walker N, Peterson RE (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241. doi:10.1093/toxsci/kfl055

    Article  Google Scholar 

  32. Sjögren M, Ehrenberg L, Rannug U (1996) Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency. Mutat Res 358:97–112. doi:10.1016/0027-5107(96)00175-3

    Article  Google Scholar 

  33. Behnisch PA, Hosoe K, Sakai S (2003) Brominated dioxin-like compounds: in vitro assessment in comparison to classical dioxin-like compounds and other polyaromatic compounds. Environ Int 29:861–877. doi:10.1016/S0160-4120(03)00105-3

    Article  Google Scholar 

  34. Colmsjö A, Rannug A, Rannug U (1984) Some chloro derivatives of polynuclear aromatic hydrocarbons are potent mutagens in Salmonella typhimurium. Mutat Res Genet Toxicol 135:21–29. doi:10.1016/0165-1218(84)90144-7

    Article  Google Scholar 

  35. Löfroth G, Nilsson L, Agurell E, Sugiyama T (1985) Salmonella/microsome mutagenicity of monochloro derivatives of some di-, tri- and tetracyclic aromatic hydrocarbons. Mutat Res Genet Toxicol 155:91–94. doi:10.1016/0165-1218(85)90123-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Muto (Ehime University) and CSIR Water Research Institute staff for their assistance during the sampling survey. We also thank Dr Ohura (Meijo University, Japan) for providing the Cl-PAH standards and Dr Sankoda (Kumamoto University, Japan) for preparing the Cl-PAH standard solution. This study was supported in part by Grants-in-Aid for Scientific Research (A: 25257403, A: 16H01784 and B: 16H02963) from the Japan Society for the Promotion of Science (JSPS) and the Environment Research and Technology Development Fund (3K153001) from the Japanese Ministry of the Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Kunisue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tue, N.M., Goto, A., Takahashi, S. et al. Soil contamination by halogenated polycyclic aromatic hydrocarbons from open burning of e-waste in Agbogbloshie (Accra, Ghana). J Mater Cycles Waste Manag 19, 1324–1332 (2017). https://doi.org/10.1007/s10163-016-0568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0568-y

Keywords

Navigation