Skip to main content

Advertisement

Log in

Application of ameliorated wood pulp to recover Cd(II), Pb(II), and Ni(II) from e-waste

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this study, dl-malic acid and hydrogen peroxide were used as leaching agents to remove metals from e-waste (printed-circuit boards) and itaconic acid-grafted poly(vinyl alcohol)-encapsulated wood pulp (IA-g-PVA-en-WP) to uptake metals from leachate with high proficiency [11.63 mg g−1; 93.03 % for Cd(II), 11.90 mg g−1; 95.18 % for Pb(II), and 12.14 mg g−1; 97.08 % for Ni(II)]. Metals were recovered from the loaded biosorbent by desorption studies. The standard analytical techniques, such as elemental analysis, Fourier-transform-infrared spectroscopy, scanning electron microscopy, atomic force microscopy, and thermogravimetric analysis, were used to characterize the recovering agent (biosorbent). At equilibrium, the metal uptake data were fitted to Langmuir and D–R isotherms (R 2 > 0.99) significantly, revealing, the homogeneous distribution of active sites on biosorbent’s backbone. The possible mechanism appeared to be ion exchanges of metal ions with H+ together with binding over functionalities (COO). Dimensionless equilibrium parameter (R L) showed the favourability of metal uptake at lower concentration, while mean adsorption energy (E) certified the physical binding of metal on functionalities which was further confirmed by sticking probability and activation energy parameters. Reusability studies were also conducted to state the performance of biosorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cui JR, Zhang LF (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256. doi:10.1016/j.jhazmat.2008-02-001

    Article  Google Scholar 

  2. Das A, Vidyadhar A, Mehrotra SP (2009) A novel flow sheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recy 53:464–469. doi:10.1016/j.resconrec.2009-03-008

    Article  Google Scholar 

  3. Robinson BH (2009) E-waste, an assessment of global production and environmental impacts. Sci Total Environ 408:183–191. doi:10.1016/j.scitotenv.2009-09-044

    Article  Google Scholar 

  4. Zhang WH, Wu YX, Simonnot MO (2012) Soil contamination due to e-waste disposal and recycling activities: a review with special focus on china. Pedosphere 22:434–455. doi:10.1016/s1002-0160(12)60030-7

    Article  Google Scholar 

  5. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. doi:10.1016/j.fuel.2011-09-030

    Article  Google Scholar 

  6. Burger J (2008) Assessment and management of risk to wildlife from cadmium. Sci Total Environ 389:37–45. doi:10.1016/j.scitotenv.2007-08-037

    Article  Google Scholar 

  7. Lee J, Song H, Yoo J (2007) Present status of the recycling of waste electrical and electronic equipment in Korea. Resour Cons Recycl 50:380–397. doi:10.1016/j.resconrec.2007.01.010

    Article  Google Scholar 

  8. Xiu F, Qi Y, Zhang F (2013) Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Manage 33:1251–1257. doi:10.1016/j.wasman.2013.01.023

    Article  Google Scholar 

  9. Tuncuk A, Stazi V, Akcil A, Yazici E, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Minerals Eng 25:28–37. doi:10.1016/j.mineng.2011.09.019

    Article  Google Scholar 

  10. Jha MK, Kumari A, Choubey PK, Lee JC, Kumar V, Joeng J (2012) Leaching of lead from solder material of waste printed circuit boards (PCBs). Hydrometallurgy 121:28–34. doi:10.1016/j.hydromet.2012.04.010

    Article  Google Scholar 

  11. Akita S, Rovira M, Sastre AM, Takeuchi H (1998) Cloud-point extraction of gold(III) with nonionic surfactant-fundamental studies and application to gold recovery from printed substrate. Sep Sci Technol 33:2159–2177. doi:10.1080/01496399808545721

    Article  Google Scholar 

  12. Kinoshita T, Akita S, Kobayashi N, Nii S, Kawaizumi F, Takahashi K (2003) Metal recovery from non-mounted printed wiring boards via hydrometallurgical processing. Hydrometallurgy 69:73–79. doi:10.1016/S0304-386X(03)00031-8

    Article  Google Scholar 

  13. Li L, Jing G, Renjie C, Feng W, Chen S, Zhang X (2010) Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manage 30:2615–2621. doi:10.1016/j.wasman.2010-08-008

    Article  Google Scholar 

  14. Li L, Ge J, Wu F, Chen R, Chen S, Wu B (2010) Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater 176:288–293. doi:10.1016/j.jhazmat.2009-11-026

    Article  Google Scholar 

  15. Li Li QuW, Zhang X, Lu J, Chen R, Wu F, Amine K (2015) Succinic acid-based leaching system: a sustainable process for recovery of valuable metals from spent Li-ion batteries. J Power Sources 282:544–551. doi:10.1016/j.jpowsour.2015.02.073

    Article  Google Scholar 

  16. Gonçalves MC, Garcia EM, Taroco HA, Gorgulho HF, Melo JO, Silva RR, Souza AG (2015) Chemical recycling of cell phone Li-ion batteries: application in environmental remediation. Waste Manage 40:144–150. doi:10.1016/j.wasman.2015.02.014

    Article  Google Scholar 

  17. Denizli A, Sanli N, Garipcan B, Patir S, Alsncak G (2004) Methacryloylamidoglutamic acid incorporated porous poly(methyl methacrylate) beads for heavy-metal removal. Ind Eng Chem Res 43:6095–6101. doi:10.1021/ie030204z

    Article  Google Scholar 

  18. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: A review. Bioresour Technol 97:1061–1085. doi:10.1016/j.biortech.2005-05-001

    Article  Google Scholar 

  19. Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23. doi:10.1016/j.jhazmat.2010-08-053

    Article  Google Scholar 

  20. Sulaymon AH, Ebrahim SE, Ridha MMJ (2013) Equilibrium, kinetic and thermodynamic biosorption of Pb(II), Cr(III) and Cd(II) ions by dead anaerobic biomass from synthetic wastewater. Environ Sci Pollut R. 20:175–187. doi:10.1007/s11356-012-0854-8

    Article  Google Scholar 

  21. He JS, Chen PJ (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78. doi:10.1016/j.biortech.2014.01.068

    Article  Google Scholar 

  22. Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T (2013) Adsorption of cationic dyes on a cellulose-based multicarboxyl adsorbent. J Chem Eng Data 58:413–421. doi:10.1021/je301140c

    Article  Google Scholar 

  23. Bayramoglu GBA, Arica MY (2012) Synthesis and characterization of magnetic beads containing aminated fibrous surfaces for removal of reactive green 19 dye: kinetics and thermodynamic parameters. J Chem Technol Biotechnol 87:705–713. doi:10.1021/je301140c

    Article  Google Scholar 

  24. Zhou Y, Zhang M, Wang X, Huang Q, Min Y, Ma T, Niu J (2014) Removal of crystal violet by a novel cellulose based adsorbent: comparison with native cellulose. Ind Eng Chem Res 53:5498–5506. doi:10.1021/ie404135y

    Article  Google Scholar 

  25. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  Google Scholar 

  26. Kumari P, Sharma P, Srivastava S, Srivastava MM (2005) Biosorption studies on shelled Moringa olifera Lamarck seed powder: removal and recovery of arsenic from aqueous system. Int J Miner Process 78:131–139. doi:10.1016/j.minpro.2005-10-001

    Article  Google Scholar 

  27. Sharma P, Kumari P, Srivastava MM, Srivastava S (2006) Removal of cadmium from aqueous system by shelled Moringa olifera Lam. Seed powder. Bioresource Technol 97:299–305. doi:10.1016/j.biortech.2005-02-034

    Article  Google Scholar 

  28. Goyal P, Srivastava S (2009) Characterization of novel Zea mays based biomaterial designed for toxic metals biosorption. J Hazard Mater 172:1206–1211. doi:10.1016/j.jhazmat.2009-07-125

    Article  Google Scholar 

  29. Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach. Clean Techn Environ Policy 16:1179–1191. doi:10.1007/s10098-014-0717-8

    Article  Google Scholar 

  30. Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: Green remediation of toxic metals. Int J Green Nanotech 4:46–53. doi:10.1080/19430892.2012.654744

    Article  Google Scholar 

  31. Varshney S, Jain P, Srivastava S (2015) Rapid adsorption of heavy metals by nitrogen-embedded cellulose using isotherm, kinetic and thermodynamic modeling. Int J Sci Technol Manage 4:1–11

    Google Scholar 

  32. Singh K, Sinha TJM, Srivastava S (2015) Functionalized nanocrystalline cellulose: Smart biosorbent for decontamination of arsenic. Int J Miner Process 139:51–63. doi:10.1016/j.minpro.2015-04-014

    Article  Google Scholar 

  33. Qua EH, Hornsby PR, Sharma HSS, Lyons G, McCall RD (2009) Preparation and characterization of poly (vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247. doi:10.1002/app.30116

    Article  Google Scholar 

  34. Ekebafe LO, Ekebafe MO, Akpa FAO, Erhuanga G, Etiobhio BW (2010) Graft copolymerization of acrylonitrile onto delignified native bamboo (Bambusa vulgaris) cellulosic and its utilization potential for heavy metal uptake from aqueous medium. Chem Ind Chem Eng Q 17:133–140. doi:10.2298/CICEQ101021063E

    Article  Google Scholar 

  35. McSweeny JD, Rowell RM, Min SH (2006) Effect of citric acid modification of Aspen wood on sorption of copper ion. J Nat Fibers 3:43–58. doi:10.1300/J395v03n01_05

    Article  Google Scholar 

  36. Anirudhan TS, Jalajamony S, Sreekumari SS (2012) Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalized bentonites. Appl Clay Sci 65–66:67–71. doi:10.1016/j.clay.2012.06.005

    Article  Google Scholar 

  37. Altun T, Pehlivan E (2007) Removal of copper(II) ions from aqueous solutions by walnut, hazelnut and almond shells. CLEAN–Soil. Air, Water 35:601–606. doi:10.1002/clen.200700046

    Article  Google Scholar 

  38. Feng Y, Yang F, Wang Y, Ma L, Wu Y, Kerr PG, Yang L (2011) Basic dye adsorption onto an agro-based waste material–Sesame hull (Sesamum indicum L.). Bioresour Technol 102:10280–10285. doi:10.1016/j.biortech.2011.08.090

    Article  Google Scholar 

  39. Kausar A, Bhatti HN, MacKinnon G (2013) Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloid Surface B 111:124–133. doi:10.1016/j.colsurfb.2013-05-028

    Article  Google Scholar 

  40. Horsfall MJ, Spiff AI (2005) Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electr J Biotech 8:162–169. doi:10.2225/vol8-issue2-fulltext-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dayalbagh Educational Institute, Dayalbagh, Agra, for providing necessary research facilities and the Central Instrumentation Laboratory of Panjab University, India, for the elemental analysis of the samples. Shilpa Varshney is grateful to the Council of Scientific and Industrial Research, New Delhi, India, under Grant 09/607(0040)2014-EMR-I, for rendering financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, S., Jain, P. & Srivastava, S. Application of ameliorated wood pulp to recover Cd(II), Pb(II), and Ni(II) from e-waste. J Mater Cycles Waste Manag 19, 1446–1456 (2017). https://doi.org/10.1007/s10163-016-0539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0539-3

Keywords

Navigation