Skip to main content
Log in

Study of nitrogen oxide absorption in the calcium sulfite slurry

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Recent researches on Thermal Treatment and Emission Control (9th i-CIPEC)
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Experiments were conducted using a bubbling reactor to investigate nitrogen oxide absorption in the calcium sulfite slurry. The effects of CaSO3 concentration, NO2/NO mole ratio and O2 concentrations on NO2 and SO2 absorption efficiencies were investigated. Five types of additives, including MgSO4, Na2SO4, FeSO4, MgSO4/Na2SO4 and FeSO4/Na2SO4, had been evaluated for enhancing NO2 absorption in CaSO3 slurry. Results showed that CaSO3 concentration had significant impact on NO2 and SO2 absorption efficiencies, and the highest absorption efficiencies of SO2 and NO2 could reach about 99.5 and 75.0 %, respectively. Furthermore, the NO2 absorption was closely related to the NO2/NO mole ratio, and the existence of NO2 in flue gas may promote NO absorption. The presence of O2 in simulated flue gas was disadvantage for NO x removal because it can oxidize sulfite to sulfate. It was worth pointing out that FeSO4/Na2SO4 was the best additive among those investigated additives, as the NO2 removal efficiency was significantly increased from 74.8 to 95.0 %. IC and in situ FTIR results suggest that the main products were NO3 and NO2 in liquid phase and N2O, N2O5 and HNO3 in gas phase during the CaSO3 absorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang SH, Cai LL, Mi XH et al (2008) NO x removal from simulated flue gas by chemical absorption-biological reduction integrated approach in a biofilter. Environ Sci Technol 42(10):3814–3820. doi:10.1021/es800200g

    Article  Google Scholar 

  2. MEPPRC China Environment Statistical Annual Report (2013). http://zls.mep.gov.cn/hjtj/nb/2013tjnb/201411/t20141124_291867.htm. Accessed 24 Nov 2014

  3. Zhao Y, Hao R, Qi M (2015) Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0. Chem Eng J 269:159–167. doi:10.1016/j.cej.2015.01.064

    Article  Google Scholar 

  4. Fang P, Cen CP, Wang XM et al (2013) Simultaneous removal of SO2, NO and Hg0 by wet scrubbing using urea + KMnO4 solution. Fuel Process Technol 106(2):645–653. doi:10.1016/j.fuproc.2012.09.060

    Article  Google Scholar 

  5. Liu Y, Zhang J, Sheng C et al (2010) Simultaneous removal of NO and SO2, from coal-fired flue gas by UV/H2O2, advanced oxidation process. Chem Eng J 162(3):1006–1011. doi:10.1016/j.cej.2010.07.009

    Article  Google Scholar 

  6. Zhao Y, Guo TX, Chen ZY et al (2010) Simultaneous removal of SO2 and NO using M/NaClO2 complex absorbent. Chem Eng J 160(1):42–47. doi:10.1016/j.cej.2010.02.060

    Article  Google Scholar 

  7. Zhang J, Zhang R, Chen X et al (2014) Simultaneous removal of NO and SO2 from flue gas by ozone oxidation and NaOH absorption. Ind Eng Chem Res 53(15):6450–6456. doi:10.1021/ie403423p

    Article  Google Scholar 

  8. Fei XU, Luo Z, Wei C et al (2009) Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge. J Environ Sci 21(3):328–332. doi:10.1016/S1001-0742(08)62272-X

    Article  Google Scholar 

  9. Yu H, Tan Z (2014) On the kinetics of the absorption of nitric oxide into ammoniacal Cobalt(II) solutions. Environ Sci Technol 48(4):2453–2463. doi:10.1021/es403901r

    Google Scholar 

  10. Zheng C, Xu C, Zhang Y et al (2014) Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system. Appl Energy 129:187–194. doi:10.1016/j.apenergy.2014.05.006

    Article  Google Scholar 

  11. Gao X, Du Z, Ding HL et al (2011) Effect of gas-liquid phase compositions on NO2 and NO absorption into ammonium-sulfite and bisulfite solutions. Fuel Process Technol 92(8):1506–1512. doi:10.1016/j.fuproc.2011.03.012

    Article  Google Scholar 

  12. Chen L, Lin KF, Yang CL (2011) Pilot study of absorption of NO2 with Na2S aqueous solutions. Environ Prog Sustain Energy 30(4):632–639. doi:10.1002/ep.10551

    Article  Google Scholar 

  13. Tang N, Liu Y, Wang H et al (2010) Enhanced absorption process of NO2 in CaSO3 slurry by the addition of MgSO4. Chem Eng J 160(1):145–149. doi:10.1016/j.cej.2010.03.022

    Article  Google Scholar 

  14. Shibukawa T, Ohira Y, Obata E (2008) Absorption of nitrogen dioxide by sodium sulfite solution. Kagaku Kogaku Ronbunshu 34(4):438–443

    Article  Google Scholar 

  15. Siddiqi MA, Petersen J, Lucas K (2001) A study of the effect of nitrogen dioxide on the absorption of sulfur dioxide in wet flue gas cleaning processes. Ind Eng Chem Res 40(9):2116–2127. doi:10.1021/ie000815g

    Article  Google Scholar 

  16. Thomas D, Vanderschuren J (1999) Analysis and prediction of the liquid phase composition for the absorption of nitrogen oxides into aqueous solutions. Sep Purif Technol 18(1):37–45. doi:10.1016/S1383-5866(99)00049-0

    Article  Google Scholar 

  17. Wang Z, Zhang X, Zhou Z et al (2012) Effect of additive agents on the simultaneous absorption of NO2 and SO2 in the calcium sulfite slurry. Energy Fuel 26(9):5583–5589. doi:10.1021/ef3007504

    Article  MathSciNet  Google Scholar 

  18. Hu G, Sun Z, Gao H (2010) Novel process of simultaneous removal of SO2 and NO2 by sodium humate solution. Environ Sci Technol 44(17):6712–6717. doi:10.1021/es101892r

    Article  Google Scholar 

  19. Gao X, Du Z, Ding HL et al (2010) Kinetics of NO x absorption into (NH4)2SO3 solution in an ammonia-based wet flue gas desulfurization process. Energy Fuel 24:5876–5882. doi:10.1021/ef101137k

    Article  Google Scholar 

  20. Dagaonkar MV, Beenackers AACM, Pangarkar VG (2001) Gas absorption into aqueous reactive slurries of calcium and magnesium hydroxide in a multiphase reactor. Catal Today 66(2):495–501. doi:10.1016/S0920-5861(01)00258-9

    Article  Google Scholar 

  21. Wang M, Sun Y, Zhu T (2013) Removal of NO x , SO2, and Hg from simulated flue gas by plasma-absorption hybrid system. IEEE Trans Plasma Sci 41(2):312–318. doi:10.1109/TPS.2012.2234483

    Article  Google Scholar 

  22. Sun C, Zhao N, Zhuang Z et al (2014) Mechanisms and reaction pathways for simultaneous oxidation of NO x and SO2 by ozone determined by in situ IR measurements. J Hazard Mater 274:376–383. doi:10.1016/j.jhazmat.2014.04.027

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program (863) of China (No. 2012AA062503) and the Environmental Nonprofit Industry Research Project of China (No. 201209005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianle Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Meng, Y., Guo, X. et al. Study of nitrogen oxide absorption in the calcium sulfite slurry. J Mater Cycles Waste Manag 18, 618–624 (2016). https://doi.org/10.1007/s10163-016-0526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0526-8

Keywords

Navigation