Skip to main content
Log in

Evaluation of concrete production with solid residues obtained from fluidized-bed incineration of MSW-derived solid recovered fuel (SRF)

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the use of solid residues derived from municipal solid waste-derived solid recovered fuel incinerated in a circulating fluidized-bed boiler for concrete production. The concrete mixtures casted by partially replacing the natural aggregates with bottom ash (27 %) and exhausted sand (13 %), according to the European standards for concrete, may be classified in the C16/20 class. The leaching tests performed on monolithic concrete samples showed that the concentrations measured in the leachates were lower than limit values for waste recovery, with the only exception of nickel for the mixture made with the exhausted sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eurostat. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_wasmun&lang=en. Accessed 4 Dec 2015

  2. ISPRA (2014) Report on urban waste—edition 2014. Report n. 202/2014 (in Italian). ISPRA Editor, Rome. ISBN 978-88-448-0665-1

  3. Allegrini E, Vadenbo C, Boldrin A, Astrup TF (2015) Life cycle assessment of resources recovery from municipal solid waste incineration bottom ash. J Environ Manag 151:132–143. doi:10.1016/j.jenvman.2014.11.032

    Article  Google Scholar 

  4. Toraldo E, Saponaro S, Careghini A, Mariani E (2013) Use of stabilized bottom ash for bound layers of road pavements. J Environ Manag 121:117–123. doi:10.1016/j.jenvman.2013.02.037

    Article  Google Scholar 

  5. Cafiero LM, Caggiano R, Cipriano V, Ashtiani FF, De Stefanis P, Iaboni V, Viselli R (2010) Report on the techniques for urban waste treatment in Italy (in italian). Federambiente, ENEA, Rome

    Google Scholar 

  6. Pera J, Coutaz L, Ambrosie J, Chababbet M (1997) Use of incinerator bottom ash in concrete. Cement Concrete Res 27(1):1–5. doi:10.1016/S0008-8846(96)00193-7

    Article  Google Scholar 

  7. Bertolini L, Carsana M, Cassago D, Quadrio Curzio A, Collepardi M (2004) MSWI ashes as mineral additions in concrete. Cement Concrete Res 34:1899–1906. doi:10.1016/j.cemconres.2004.02.001

    Article  Google Scholar 

  8. Pavlík Z, Jerman M, Keppert M, Pavlíková M, Reiterman P, Černý R (2010) Use of municipal solid waste incineration waste materials as admixtures in concrete. In: 2nd International conference on sustainable construction materials and technologies, Ancona, 28–30 June 2010

  9. Abbà A, Collivignarelli MC, Sorlini S, Bruggi M (2014) On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Compos Part B Eng 58:502–509. doi:10.1016/j.compositesb.2013.11.008

    Article  Google Scholar 

  10. Sivakumar S, Kameshwari B (2015) Influence of fly ash, bottom ash, and light expanded clay aggregate. Adv Mater Sci Eng 2015:1–9. doi:10.1155/2015/849274

    Article  Google Scholar 

  11. Bruder-Hubscher V, Lagarde F, Leroy MJF, Coughanowr C, Enguehard F (2001) Utilisation of bottom ash in road construction: evaluation of the environmental impact. Waste Manag Res 19:545–556. doi:10.1177/0734242X0101900611

    Article  Google Scholar 

  12. Forteza R, Far M, Seguì C, Cerdá V (2004) Characterization of bottom ash in municipal solid waste incinerators for its use in road base. Waste Manag 24:899–909. doi:10.1016/j.wasman.2004.07.004

    Article  Google Scholar 

  13. De Windt L, Dabo D, Lidelöw S, Badreddine R, Lagerkvist A (2011) MSWI bottom ash used as basement at two pilot-scale roads: comparison of leachate chemistry and reactive transport modeling. Waste Manag 31:267–280. doi:10.1016/j.wasman.2010.06.002

    Article  Google Scholar 

  14. Andreola F, Barbieri L, Corradi A, Lancellotti I, Manfredini T (2001) The possibility to recycle solid residues of the municipal waste incineration into a ceramic tile body. J Mater Sci 36:4869–4873. doi:10.1023/A:1011823901409

    Article  Google Scholar 

  15. Monteiro RCC, Figueiredo CF, Alendouro MS, Ferro MC, Davim EJR, Fernandes MHV (2008) Characterization of MSWI bottom ashes towards utilization as glass raw material. Waste Manag 28(7):1119–1125. doi:10.1016/j.wasman.2007.05.004

    Article  Google Scholar 

  16. Barberio G, Buttol P, Masoni P, Scalbi S, Andreola F, Barbieri F, Lancellotti I (2010) Use of incinerator bottom ash for frit production. J Ind Ecol 14(2):200–216. doi:10.1111/j.1530-9290.2010.00224.x

    Article  Google Scholar 

  17. Müller U, Rübner K (2006) The microstructure of concrete made with municipal solid waste incinerator bottom ash as an aggregate component. Cement Concr Res 36:1434–1443. doi:10.1016/j.cemconres.2006.03.023

    Article  Google Scholar 

  18. Sorlini S, Abbà A, Collivignarelli C (2011) Recovery of MSWI and soil washing residues as concrete aggregates. Waste Manag 31:289–297. doi:10.1016/j.wasman.2010.04.019

    Article  Google Scholar 

  19. Tang P, Florea MVA, Spiesz P, Brouwers HJH (2015) Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Construct Build Mater 83:77–94. doi:10.1016/j.conbuildmat.2015.02.033

    Article  Google Scholar 

  20. Boghetich G, Liberti L, Notarnicola M, Palma M, Petruzzelli D (2005) Chloride extraction for quality improvement of municipal solid waste incinerator ash for the concrete industry. Waste Manag Res 23:57–61. doi:10.1177/0734242X05051017

    Article  Google Scholar 

  21. Aubert JE, Husson B, Vaquier A (2004) Use of municipal solid waste incineration fly ash in concrete. Cement Concrete Res 34:957–963. doi:10.1016/j.cemconres.2003.11.002

    Article  Google Scholar 

  22. Shi H-S, Kan L-L (2009) Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. J Hazard Mater 164(2–3):750–754. doi:10.1016/j.jhazmat.2008.08.077

    Article  Google Scholar 

  23. del Valle-Zermeño R, Formosa J, Chimenos JM, Martínez M, Fernández AI (2013) Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag 33:621–627. doi:10.1016/j.wasman.2012.09.015

    Article  Google Scholar 

  24. Ginés O, Chimenos JM, Vizcarro A, Formosa J, Rosell JR (2009) Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: environmental and mechanical considerations. J Hazard Mater 169:643–650. doi:10.1016/j.jhazmat.2009.03.141

    Article  Google Scholar 

  25. Todorovic J, Svensson M, Herrmann I, Ecke H (2006) Artificial carbonation for controlling the mobility of critical elements in bottom ash. J Mater Cycles Waste Manag 8:145–153. doi:10.1007/s10163-006-0153-x

    Article  Google Scholar 

  26. Sakita S, Nishimura K (2015) Physical containment of municipal solid waste incineration bottom ash by accelerating carbonation. J Mater Cycles Waste Manag. doi:10.1007/s10163-015-0369-8

    Google Scholar 

  27. Lam CHK, Ip AWM, Barford JP, McKay G (2010) Use of incineration MSW ash: a review. Sustainability 2:1943–1968. doi:10.3990/su2071943

    Article  Google Scholar 

  28. Rübner K, Haamkens F, Linde O (2008) Use of municipal solid waste incinerator bottom ash as aggregate in concrete. Q J Eng Geol Hydroge 41(4):459–464. doi:10.1144/1470-9236/07-036

    Article  Google Scholar 

  29. Ferraris M, Salvo M, Ventrella A, Buzzi L, Veglia M (2009) Use of vitrified MSWI bottom ashes for concrete production. Waste Manag 29:1041–1047. doi:10.1016/j.wasman.2008.07.014

    Article  Google Scholar 

  30. Rendek E, Ducom G, Germain P (2007) Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Manag 27:1403–1407. doi:10.1016/j.wasman.2007.03.016

    Article  Google Scholar 

  31. Ionescu G, Rada EC (2012) Material and energy recovery in a municipal solid waste system: practical applicability. Int J Environ Resour 1(1):26–30

    Google Scholar 

  32. Kaibouchi S, Germain P (2003) Comparative study of physico-chemical and environmental characteristics of (MSWI) bottom ash resulting from classical and selective collection for a valorization in road construction. In: Proceedings of international conference on the environmental and technical implications of construction with alternative materials; WASCON 2003 San Sebastian Spain

  33. EN 206 (2013) Concrete—Specification, performance, production and conformity. Europe

  34. UNI EN 12457-2 (2004) Characterisation of waste—leaching—compliance test for leaching of granular waste materials and sludges—part 2: one stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 4 mm (without or with size reduction). Italy

  35. UNI 10802 (2004) Waste—liquid, granular, pasty wastes and sludges—manual sampling and preparation and analysis of eluates. Italy

  36. APAT. Analytical methods for water. APAT manuals and guidelines. Report n. 29/2003 (in Italian). ISBN 88-448-0083-7

  37. CNR IRSA (1985) Book n. 64—analytical methods for sludge—appendix I (in Italian)

  38. UNI EN 933-1 (2012) Tests for geometrical properties of aggregates—part 1: determination of particle size distribution—Sieving method. Italy

  39. UNI EN 1097-6 (2013) Tests for mechanical and physical properties of aggregates. Part 6: determination of particle density and water absorption. Italy

  40. UNI EN 12390-3 (2009) Testing hardened concrete—part 3: compressive strength of test specimens. Italy

  41. UNI EN 12390-6 (2010) Testing hardened concrete—part 6: tensile splitting strength of test specimens. Italy

  42. Quenee B, Guanshu L, Siwak JM, Basuyau V (2000) The use of MSWI (municipal solid waste incineration) bottom ash as aggregate in hydraulic concrete. Waste materials in construction. In: Proceedings of the international conference on the science and engineering of recycling for environmental protection, vol 1, pp 422–437, Pergamon UK

  43. Neville AM (2012) Properties of concrete, 5th edn. Prentice Hall. ISBN: 0-273-75580-3

  44. Shakhmenko G, Birsh J (1998) Concrete mix design and optimization. In: 2nd International PhD symposium in civil engineering, Budapest

  45. Tang P, Yu QL, Yu R, Brouwers HJH (2014) The application of MSWI bottom ash fines in high performance concrete. In: 1st International conference on the chemistry of construction materials, pp 435–438

  46. Rajamane NP, Annie Peter J, Ambily PS (2007) Prediction of compressive strength of concrete with fly ash as sand replacement material. Cement Concrete Compos 29(3):218–223. doi:10.1016/j.cemconcomp.2006.10.001

    Article  Google Scholar 

  47. Ministerial Decree n. 186 (2006) Regulatory that modified Ministerial Decree dated 5 February 1998 (in Italian). Official Gazette n. 115 dated 05/19/2006

  48. Dijkstra JJ, Van Zomeren A, Meeussen JCL, Comans RNJ (2006) Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum. Environ Sci Technol 40:4481–4487. doi:10.1021/es052214s

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank: Megazzini s.r.l. in Bressana Bottarone (Pavia) for the precasting of the concrete specimens; Lomellina Energia s.r.l. company in Parona (Pavia) for the supply of residues; the Laboratory of Department of Structural Mechanics at the University of Pavia (especially Giorgio Sforzini) for the mechanical tests performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Abbà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collivignarelli, M.C., Abbà, A., Sorlini, S. et al. Evaluation of concrete production with solid residues obtained from fluidized-bed incineration of MSW-derived solid recovered fuel (SRF). J Mater Cycles Waste Manag 19, 1374–1383 (2017). https://doi.org/10.1007/s10163-016-0523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0523-y

Keywords

Navigation