Skip to main content
Log in

Regulation of barley miRNAs upon dehydration stress correlated with target gene expression

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

We aim to identify conserved and dehydration responsive microRNAs (miRNAs) in Hordeum vulgare (barley). A total of 28 new barley miRNAs belonging to 18 distinct miRNA families were identified. Detailed nucleotide analyses revealed that barley pre-miRNAs are in the range of 46–114 nucleotides with average of 77.14. Using 28 newly detected miRNAs as queries, 445 potential target mRNAs were predicted. The predicted miRNAs were differentially expressed and some of them behaved similarly in leaf and root tissues upon stress treatment. Hvu-MIR156, Hvu-MIR166, Hvu-MIR171, and Hvu-MIR408 were detected as dehydration stress-responsive barley miRNAs. To discover target transcripts of barley miRNAs a modified 5′ RLM-RACE was performed and seven cleaved miRNA transcripts were retrieved from drought stressed leaf samples. In silico analysis indicated 15 potential EST targets. Measurement of expression levels showed a positive correlation between levels of miRNA expression and suppression of their target mRNA transcripts in dehydration-stress-treated barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ΔG:

Folding free energies

AGO1:

Argonaute-1

ARF:

Auxin response transcription factor

DCL1:

Dicer-like 1

GSS:

Genome survey sequence

miRNA:

Micro-RNA

RT:

Real time

EST:

Expressed sequence tag

EREBPs:

Ethylene-responsive element binding proteins

MFE:

Minimal folding free energy

MFEI:

Minimal folding free energy index

miRNA*:

miRNA star strand

NCBI:

National center for biotechnology information

nt:

Nucleotide(s)

pre-miRNA:

MicroRNA precursor

pri-miRNAs:

MicroRNA primary

RISC:

RNA-induced silencing complex

5′ RLM-RACE:

RNA ligase-mediated 5′ rapid amplification of cDNA ends

qRT-PCR:

Quantitative real-time PCR

SBP:

Squamosa promoter binding proteins

SCL6:

Scarecrow-like transcription factor 6

Ser:

Serine

SPL:

SBP-like proteins

Thr:

Threonine

ORF:

Open reading frame

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  • Altschul S, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias AA, Reyes JL (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    Article  CAS  PubMed  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662

    Article  CAS  PubMed  Google Scholar 

  • Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132:709–771

    Article  CAS  PubMed  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci U S A 101:11511–11516

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li WX, Xie D, Peng JR, Ding SW (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microrna in host gene expression. Plant Cell 16:1302–1313

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33(4):481–489

    Article  CAS  PubMed  Google Scholar 

  • Dryanova A, Zakharov A, Gulick PJ (2008) Data mining for miRNAs and their targets in the Triticeae. Genome 51:433–443

    Article  CAS  PubMed  Google Scholar 

  • Ergen NZ, Dinler G, Shearman RC, Budak H (2007). Identifying, cloning and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra. Gene:393(1-2):145–52

  • Ergen NZ, Thimmapuram J, Bohnert HJ, Budak H (2009) Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct Integr Genomics 9(3):377–396

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Xiang AL, Yang Q, Yang ZM (2007) Bioinformatic identification of microRNAs and their target genes from Solanum tuberosum expressed sequence tags. Chin Sci Bull 52:2380–2389

    Article  CAS  Google Scholar 

  • Jones-Rhoades M, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57:19–53

    Google Scholar 

  • Kasschau K, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, Chua NH, Park CM (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  CAS  PubMed  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of theCUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li W, Jin YX (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin (Shanghai) 37:75–87

    Article  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie ZX, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lu SY, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  Google Scholar 

  • Mallory A, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Moxon S Jr, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Phillips JR, Dalmay T, Bartel D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581(19):3592–3597

    Article  CAS  PubMed  Google Scholar 

  • Reinhart B, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Rhoades M, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  CAS  PubMed  Google Scholar 

  • Song C, Fang J, Li X, Liu H, Chao CT (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  Google Scholar 

  • Trindade I, Capitão C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231(3):705–716

    Article  CAS  PubMed  Google Scholar 

  • Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230:659–669

    Article  CAS  PubMed  Google Scholar 

  • Unver T, Namuth-Covert D, Budak H (2009) Review of current methodological approaches for characterizing microRNAs in plants. International Journal of Plant Genomics 2009:262463

    PubMed  Google Scholar 

  • Unver T, Bakar M, Shearman RC, Budak H (2010) Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Gen Genomics 283:397–413

    Article  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:1–12

    Article  Google Scholar 

  • Wang J, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu QY, Vogel J, Jia J, Qi Y, Mao L (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics 9:499–511

    Article  CAS  PubMed  Google Scholar 

  • Wichadakul D, Mhuanthong W (2009) MicroPC (μPC): a comprehensive resource for predicting and comparing plant microRNAs. BMC Genomics 10:366

    Article  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang B, Pan XP, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan XP, Cobb GP, Anderson TA (2006b) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang QL, Pan XP (2007a) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang QL, Wang K, Pan X, Liu F, Gou T, Cobb GP, Anderson TA (2007b) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikmet Budak.

Additional information

Melda Kantar and Turgay Unver should be regarded as joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Pre-miRNA sequences of predicted barley miRNAs (DOC 66 kb)

Supplementary Table 2

Computationally identified target ESTs for H. vulgare miRNAs (DOC 45 kb)

Supplementary Table 3

List of primers used for quantification and validation of computer-based H. vulgare miRNAs (DOC 38 kb)

Supplementary Table 4

In silico found miRNA targets that were intended to be amplified in RLM-RACE reactions. The green part indicates in silico miRNA cleavage site, yellow parts indicate reverse primers (DOC 25 kb)

Supplementary Table 5

miRNA cleaved mRNA sequences retrieved with RLM-RACE experiments (DOC 32 kb)

Supplementary Table 6

Mean quantification values and corresponding standard deviations of triplicates for miRNA and target real-time PCRs (DOC 90 kb)

Supplementary Figure 1

Sequence alignment of RACE sequences with computationally proposed Hvu-miRNAs (DOC 27 kb)

Supplementary Figure 2

Sequence alignment of RACE sequences with known miRNAs from different plant species. * indicates reverse complimentary miRNA (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantar, M., Unver, T. & Budak, H. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10, 493–507 (2010). https://doi.org/10.1007/s10142-010-0181-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0181-4

Keywords

Navigation