Skip to main content

Advertisement

Log in

Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa)

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Auxin exerts pleiotropic effects on plant growth and development by regulating the expression of early auxin-responsive genes of auxin/indoleacetic acid (Aux/IAA), small auxin-up RNA, and GH3 classes. These genes have been studied extensively in dicots like soybean and Arabidopsis. We had earlier characterized a cDNA of the first monocot member of Aux/IAA family from rice. The achievement of the large scale rice genome sequencing combined with the availability of full-length cDNA sequences from Knowledge-based Oryza Molecular Biological Encyclopedia provided us the opportunity to draw up the first comprehensive list of Aux/IAA genes in a monocot. By screening the available databases, we have identified 31 Aux/IAA genes having high sequence identity within the conserved domains I, II, III, and IV. The genomic organization as well as chromosomal location of all the Oryza sativa indoleacetic acid (OsIAA) genes is reported. The rice Aux/IAA proteins can be classified in two groups (A and B) on the basis of their phylogenetic relationship with Arabidopsis Aux/IAA proteins. An evolutionary pattern of the rice Aux/IAA genes has been discussed by analyzing their structure (exon/intron organization) and duplications. Interestingly, the duplication of rice Aux/IAA genes was found to be associated with chromosomal block duplication events in rice. The in-silico analysis has been complemented with real-time polymerase chain reaction analysis to quantify transcript levels of all Aux/IAA family members. OsIAA genes showed differential and overlapping organ-specific expression patterns in light- and dark-grown seedlings/plants. Although auxin enhanced the transcript abundance of most of the OsIAA genes, the effect was more pronounced on OsIAA9, 14, 19, 20, 24, and 31. These results provide a foundation for future studies on elucidating the precise role of rice Aux/IAA genes in early steps of auxin signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed  CAS  Google Scholar 

  • Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci U S A 91:326–330

    Article  PubMed  CAS  Google Scholar 

  • Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251:533–549

    Article  PubMed  CAS  Google Scholar 

  • Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O et al (1995) Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377:3–17

    PubMed  CAS  Google Scholar 

  • Ainley WM, Walker JC, Nagao RT, Key JL (1988) Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem 263:10658–10666

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Wolfe, KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Conner TW, Goekjian VH, LaFayette PR, Key JL (1990) Structure and expression of two auxin-inducible genes from Arabidopsis. Plant Mol Biol 15:623–632

    Article  PubMed  CAS  Google Scholar 

  • Dargeviciute A, Roux C, Decreux A, Sitbon F, Perrot-Rechenmann C (1998) Molecular cloning and expression of the early auxin-responsive Aux/IAA gene family in Nicotiana tabacum. Plant Cell Physiol 39:993–1002

    PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Estelle M (2000) Functions of the ubiquitin proteasome pathway in auxin response. Trends Biochem Sci 25:133–138

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle O (2001) Auxin regulates SCFTIR1-dependent degradation of Aux/IAA proteins. Nature 414:271–276

    Article  PubMed  CAS  Google Scholar 

  • Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614

    Article  PubMed  CAS  Google Scholar 

  • Hagen G, Guilfoyle TJ (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Tyagi SB, Thakur JK, Tyagi AK, Khurana, JP (2004) Molecular characterization of a light-responsive gene, breast basic conserved protein 1 (OsiBBC1), encoding nuclear-localized protein homologous to ribosomal protein L13 from Oryza sativa indica. Biochim Biophys Acta 1676:182–192

    PubMed  CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2005) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics (in press)

  • Kepinski S, Leyser O (2004) Auxin-induced SCFTIR1–Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci U S A 101:12381–12386

    Article  PubMed  CAS  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H et al (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci U S A 94:11786–11791

    Article  PubMed  CAS  Google Scholar 

  • Kolkman JA, Stemmer WPC (2001) Directed evolution of proteins by exon shuffling. Nat Biotechnol 19:423–428

    Article  PubMed  CAS  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  PubMed  CAS  Google Scholar 

  • Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780

    Article  PubMed  Google Scholar 

  • Nagpal P, Walker L, Young J, Sonawala A, Timpte C, Estelle M, Reed JW (2000) AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol 123:563–573

    Article  PubMed  CAS  Google Scholar 

  • Nebenfuhr A, White TJ, Lomax TL (2000) The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato. Plant Mol Biol 44:73–84

    Article  PubMed  CAS  Google Scholar 

  • Oeller PW, Keller JA, Parks JE, Silbert JE, Theologis A (1993) Structural characterization of the early indoleacetic acid-inducible genes PS-IAA4/5 and PS-IAA6 of pea (Pisum sativum L). J Mol Biol 233:789–798

    Article  PubMed  CAS  Google Scholar 

  • Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    Article  PubMed  CAS  Google Scholar 

  • Phillips SEV (1994) The β-ribbon DNA recognition motif. Annu Rev Biophys Biomol Struct 23:671–701

    Article  PubMed  CAS  Google Scholar 

  • Ramos JA, Zenser N, Leyser O, Callis J (2001) Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent. Plant Cell 13:2349–2360

    Article  PubMed  CAS  Google Scholar 

  • Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425

    Article  PubMed  CAS  Google Scholar 

  • Reed JW, Elumalai RP, Chory J (1998) Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation. Genetics 148:1295–1310

    PubMed  CAS  Google Scholar 

  • Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    Article  PubMed  CAS  Google Scholar 

  • Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480

    Article  PubMed  CAS  Google Scholar 

  • Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an Aux/IAA gene. Science 279:1371–1373

    Article  PubMed  CAS  Google Scholar 

  • Soh MS, Hong SH, Kim BC, Vizir I, Park H, Choi G, Hong MY, Chung Y-Y, Furuya M, Nam HG (1999) Regulation of both light- and auxin-mediated development by the Arabidopsis IAA3/SHY2 gene. J Plant Biol 42:239–246

    Article  CAS  Google Scholar 

  • Stowe-Evans EL, Harper RM, Motchoulski AV, Liscum E (1998) NPH4, a conditional modulator of auxin-dependent differential growth responses in Arabidopsis. Plant Physiol 118:1265–1275

    Article  PubMed  CAS  Google Scholar 

  • Thakur JK, Tyagi AK, Khurana JP (2001) OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light. DNA Res 8:193–203

    Article  PubMed  CAS  Google Scholar 

  • Thakur JK, Jain M, Tyagi AK, Khurana JP (2005) Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsiIAA1, an Aux/IAA protein from rice, via proteasome. Biochim Biophys Acta 1730:196–205

    PubMed  CAS  Google Scholar 

  • Theologis A, Huynh TV, Davis RW (1985) Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183:53–68

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tian Q, Reed J (1999) Control of auxin-regulated root development by Arabidopsis thaliana SHY/IAA3 gene. Development 126:711–721

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7:1611–1623

    Article  PubMed  CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  Google Scholar 

  • Walker JC, Key JL (1982) Isolation of cloned cDNAs to auxin-responsive poly(A) RNAs of elongating soybean hypocotyls. Proc Natl Acad Sci U S A 79:7185–7189

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946

    Article  PubMed  CAS  Google Scholar 

  • Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J (2000) Degradation of Aux/IAA protein is essential for normal auxin signaling. Plant J 21:553–562

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto KT, Mori H, Imaseki H (1992) cDNA cloning of indole-3-acetic acid regulated genes: Aux22 and SAUR from mung bean (Vigna radiata) hypocotyls tissue. Plant Cell Physiol 33:93–97

    CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

MJ acknowledges the award of Senior Research Fellowship from the Council of Scientific and Industrial Research, New Delhi. This research work was financially supported by the Department of Biotechnology, Government of India, and the University Grants Commission, New Delhi. We gratefully acknowledge the KOME, TAIR, TIGR, and the IRGSP database resources for availability of detailed sequence information on rice and Arabidopsis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra P. Khurana.

Electronic supplementary materials

Table S1

Primer sequences for real-time PCR expression analysis (PDF 9 kb)

Table S2

Phenotypes of the Tos17 insertion mutants of rice Aux/IAA genes (PDF 6 kb)

Fig. S1

Multiple alignments of the full_length rice and Arabidopsis Aux/IAA proteins obtained with ClustalX and manual correction. Conserved residues (present in more than 50% of aligned sequences) in the domains I to IV are highlighted in gray boxes. Amino acids considered as conserved are: (K and R; D and E; I, L and V). Gaps (marked with dashes) have been introduced to maximize the alignments. Conserved domains are underlined and indicated by Roman numerals (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, M., Kaur, N., Garg, R. et al. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6, 47–59 (2006). https://doi.org/10.1007/s10142-005-0005-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-005-0005-0

Keywords

Navigation