Skip to main content

Advertisement

Log in

Regulation of Extracellular Matrix Synthesis by Shell Extracts from the Marine Bivalve Pecten maximus in Human Articular Chondrocytes— Application for Cartilage Engineering

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The shells of the bivalve mollusks are organo-mineral structures predominantly composed of calcium carbonate, but also of a minor organic matrix, a mixture of proteins, glycoproteins, and polysaccharides. These proteins are involved in mineral deposition and, more generally, in the spatial organization of the shell crystallites in well-defined microstructures. In this work, we extracted different organic shell extracts (acid-soluble matrix, acid-insoluble matrix, water-soluble matrix, guanidine HCl/EDTA-extracted matrix, referred as ASM, AIM, WSM, and EDTAM, respectively) from the shell of the scallop Pecten maximus and studied their biological activities on human articular chondrocytes (HACs). We found that these extracts differentially modulate the biological activities of HACs, depending on the type of extraction and the concentration used. Furthermore, we showed that, unlike ASM and AIM, WSM promotes maintenance of the chondrocyte phenotype in monolayer culture. WSM increased the expression of chondrocyte-specific markers (aggrecan and type II collagen), without enhancing that of the main chondrocyte dedifferentiation marker (type I collagen). We also demonstrated that WSM could favor redifferentiation of chondrocyte in collagen sponge scaffold in hypoxia. Thus, this study suggests that the organic matrix of Pecten maximus, particularly WSM, may contain interesting molecules with chondrogenic effects. Our research emphasizes the potential use of WSM of Pecten maximus for cell therapy of cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida MJ, Milet C, Peduzzi J, Pereira L, Haigle J, Barthelemy M, Lopez E (2000) Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. J Exp Zool 288:327–334

  • Arivalagan J, Yarra T, Marie B, Sleight VA, Duvernois-Berthet E, Clark MS, Marie A, Berland S (2017) Insights from the shell proteome: biomineralization to adaptation. Mol Biol Evol 34:66–77

    Article  PubMed  Google Scholar 

  • Atlan G, Balmain N, Berland S et al (1997) Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci III Sci Vie 320:253–258

    Article  CAS  Google Scholar 

  • Atlan G, Delattre O, Berland S, LeFaou A, Nabias G, Cot D, Lopez E (1999) Interface between bone and nacre implants in sheep. Biomaterials 20:1017–1022

    Article  PubMed  CAS  Google Scholar 

  • Bédouet L, Rusconi F, Rousseau M, Duplat D, Marie A, Dubost L, le Ny K, Berland S, Péduzzi J, Lopez E (2006) Identification of low molecular weight molecules as new components of the nacre organic matrix. Comp Biochem Physiol B Biochem Mol Biol 144:532–543

    Article  PubMed  CAS  Google Scholar 

  • Bessa PC, Casal M, Reis RL (2008) Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2:81–96

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi R, Singha PK, Dey S (2013) Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation. PLoS One 8:e84584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demoor M, Maneix L, Ollitrault D, Legendre F, Duval E, Claus S, Mallein-Gerin F, Moslemi S, Boumediene K, Galera P (2012) Deciphering chondrocyte behaviour in matrix-induced autologous chondrocyte implantation to undergo accurate cartilage repair with hyaline matrix. Pathol Biol 60:199–207

    Article  PubMed  CAS  Google Scholar 

  • Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, Lafont J, Denoix JM, Audigié F, Mallein-Gerin F, Legendre F, Galera P (2014) Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta 1840:2414–2440

    Article  PubMed  CAS  Google Scholar 

  • Gao P, Liao Z, Wang X-X, Bao LF, Fan MH, Li XM, Wu CW, Xia SW (2015) Layer-by-layer proteomic analysis of Mytilus galloprovincialis shell. PLoS One 10:e0133913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamghari M, Almeida MJ, Berland S, Huet H, Laurent A, Milet C, Lopez E (1999) Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25:91S–94S

    Article  PubMed  CAS  Google Scholar 

  • Latire T, Legendre F, Bigot N, Carduner L, Kellouche S, Bouyoucef M, Carreiras F, Marin F, Lebel JM, Galéra P, Serpentini A (2014) Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts. PLoS One 9:e99931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee K, Kim H, Kim JM, Chung YH, Lee TY, Lim HS, Lim JH, Kim T, Bae JS, Woo CH, Kim KJ, Jeong D (2011) Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function. Mol Biol Rep 39:3211–3218

    Article  PubMed  CAS  Google Scholar 

  • Legendre F, Dudhia J, Pujol J-P, Bogdanowicz P (2003) JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. J Biol Chem 278:2903–2912

    Article  PubMed  CAS  Google Scholar 

  • Legendre F, Heuze A, Boukerrouche K, Leclercq S, Boumediene K, Galera P, Domagala F, Pujol JP, Ficheux H (2009) Rhein, the metabolite of diacerhein, reduces the proliferation of osteoarthritic chondrocytes and synoviocytes without inducing apoptosis. Scand J Rheumatol 38:104–111

    Article  PubMed  CAS  Google Scholar 

  • Legendre F, Ollitrault D, Hervieu M, Baugé C, Maneix L, Goux D, Chajra H, Mallein-Gerin F, Boumediene K, Galera P, Demoor M (2013) Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia. Tissue Eng Part C Methods 19:550–567

    Article  PubMed  CAS  Google Scholar 

  • Lelong C, Mathieu M, Favrel P (2001) Identification of new bone morphogenetic protein-related members in invertebrates. Biochimie 83:423–426

    Article  PubMed  CAS  Google Scholar 

  • Liu YC, Torita A, Hasegawa Y (2006) Scallop shell extract promotes recovery from UV-B-induced damage in rat skin epidermal layer. Fish Sci 72:388–392

    Article  CAS  Google Scholar 

  • Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679

    Article  PubMed  CAS  Google Scholar 

  • Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124

    Article  CAS  Google Scholar 

  • Marie B, Joubert C, Tayalé A et al (2012) Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 109:20986–20991

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci (Schol Ed) 4:1099–1125

    Article  Google Scholar 

  • Markway BD, Cho H, Johnstone B (2013) Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes. Arthritis Res Ther 15:R92

    Article  PubMed  PubMed Central  Google Scholar 

  • Marlovits S, Zeller P, Singer P, Resinger C, Vécsei V (2006) Cartilage repair: generations of autologous chondrocyte transplantation. Eur J Radiol 57:24–31

    Article  PubMed  Google Scholar 

  • Matsushiro A, Miyashita T (2004) Evolution of hard-tissue mineralization: comparison of the inner skeletal system and the outer shell system. J Bone Miner Metab 22:163–169

    Article  PubMed  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93:9657–9660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mouriès LP, Almeida M-J, Milet C et al (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229

    Article  PubMed  Google Scholar 

  • Nederbragt AJ, van Loon AE, Dictus WJAG (2002) Expression of Patella vulgata orthologs of engrailed and dpp-BMP2/4 in adjacent domains during molluscan shell development suggests a conserved compartment boundary mechanism. Dev Biol 246:341–355

    Article  PubMed  CAS  Google Scholar 

  • Ollitrault D, Legendre F, Drougard C, Briand M, Benateau H, Goux D, Chajra H, Poulain L, Hartmann D, Vivien D, Shridhar V, Baldi A, Mallein-Gerin F, Boumediene K, Demoor M, Galera P (2015) BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes. Tissue Eng Part C Methods 21:133–147

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Mouriès L, Almeida M-J, Ribeiro C, Peduzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003

    Article  PubMed  CAS  Google Scholar 

  • Pfeilschifter J, Laukhuf F, Müller-Beckmann B, Blum WF, Pfister T, Ziegler R (1995) Parathyroid hormone increases the concentration of insulin-like growth factor-I and transforming growth factor beta 1 in rat bone. J Clin Invest 96:767–774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rousseau M, Pereira-Mouriès L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 135:1–7

    PubMed  Google Scholar 

  • Shen Y, Zhu J, Zhang H, Zhao F (2006) In vitro osteogenetic activity of pearl. Biomaterials 27:281–287

    Article  PubMed  CAS  Google Scholar 

  • Silve C, Lopez E, Vidal B, Smith DC, Camprasse S, Camprasse G, Couly G (1992) Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcif Tissue Int 51:363–369

    Article  PubMed  CAS  Google Scholar 

  • Torita A, Liu YC, Hasegawa Y (2004) Photoprotective activity of scallop shell water-extract in keratinocyte cells. Fish Sci 70:910–915

    Article  CAS  Google Scholar 

  • Torita A, Miyamoto A, Hasegawa Y (2007) The effects of scallop shell extract on collagen synthesis. Fish Sci 73:1388–1394

    CAS  Google Scholar 

  • Weiss IM, Göhring W, Fritz M, Mann K (2001) Perlustrin, a Haliotis laevigata (abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem Biophys Res Commun 285:244–249

    Article  PubMed  CAS  Google Scholar 

  • Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392:861–862

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Zhang R (2006) Matrix proteins in the outer shells of molluscs. Mar Biotechnol (NY) 8:572–586

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project received the label of AQUIMER pole (M. Coquelle). The authors thank Copalis (Boulogne-Sur-Mer, France) for providing the shell powders.

Funding

This work was financially supported by the “Fonds Unique Interministériel” (FUI, French Government) through the SEAMINEROIL program to PG and JML. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. MB: Fellowship from the Regional Council of Lower Normandy. TGL: Fellowship from the French Ministry of Research and Technology. TL: Fellowship supported by the SEAMINEROIL grant from the FUI. FL: Post-doctoral fellow supported by a 1-year grant from the FUI.

Author information

Authors and Affiliations

Authors

Contributions

MB, JML, PG, and FL designed the experiments. MB, RR, TGL, TL, and FL performed the experiments. MB, AS, JML, PG, and FL analyzed the data. FC, FM, and SL contributed the reagents, materials, and analysis tools. MB and FL wrote the paper. AS, FM, and PG realized the critical revision of the article. JML and PG provided the financial support.

Corresponding author

Correspondence to Philippe Galéra.

Ethics declarations

All patients signed an informed consent agreement form, which was approved by the local ethics committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic Supplementary Material

Fig. S1

Effect of WSM of calcium carbonate on the metabolic activity of chondrocytes cultured in monolayers. HACs were cultured for 24, 48 and 72 h in monolayers in normoxia, with or without 50, 100, 250, 500 and 1000 μg/ml of WSM of CaCO3. The metabolic activity was measured using the WST-1 assay and represented as box plots (n = 4). The significance of the results was assessed using the Kruskal Wallis test (no significant differences). (GIF 24 kb).

High Resolution Image (TIFF 630 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouyoucef, M., Rakic, R., Gómez-Leduc, T. et al. Regulation of Extracellular Matrix Synthesis by Shell Extracts from the Marine Bivalve Pecten maximus in Human Articular Chondrocytes— Application for Cartilage Engineering. Mar Biotechnol 20, 436–450 (2018). https://doi.org/10.1007/s10126-018-9807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9807-7

Keywords

Navigation