Skip to main content

Advertisement

Log in

Proteomic Strategy for Identifying Mollusc Shell Proteins Using Mild Chemical Degradation and Trypsin Digestion of Insoluble Organic Shell Matrix: A Pilot Study on Haliotis tuberculata

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

A successful strategy for the identification of shell proteins is based on proteomic analyses where soluble and insoluble fractions isolated from organic shell matrix are digested with trypsin with the aim of generating peptides, which are used to identify novel shell proteins contained in databases. However, using trypsin as a sole degradative agent is limited by the enzyme’s cleavage specificity and is dependent upon the occurrence of lysine and arginine in the shell protein sequence. To bypass this limitation, we investigated the ability of trifluoroacetic acid (TFA), a low-specificity chemical degradative agent, to generate clusters of analyzable peptides from organic shell matrix, suitable for database annotation. Acetic acid-insoluble fractions from Haliotis tuberculata shell were processed by trypsin followed by TFA digestion. The hydrolysates were used to annotate an expressed sequence tag library constructed from the mantle tissue of Haliotis asinina, a tropical abalone species. The characterization of sequences with repeat motifs featured in some of the shell matrix proteins benefited from TFA-induced serial cutting, which can result in peptide ladder series. Using the degradative specificities of TFA and trypsin, we were able to identify five novel shell proteins. This pilot study indicates that a mild chemical digestion of organic shell matrix combined with trypsin generates peptides suitable for proteomic analysis for better characterization of mollusc shell matrix proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem Eur J 12:980–987

    Article  PubMed  CAS  Google Scholar 

  • Auzoux-Bordenave S, Badou A, Gaume B, Berland S, Helléouet MN, Milet C, Huchette S (2010) Ultrastructure, chemistry and mineralogy of the growing shell of the european abalone Haliotis tuberculata. J Struct Biol 171:277–290

    Article  PubMed  CAS  Google Scholar 

  • Bédouet L, Marie A, Dubost L, Péduzzi J, Duplat D, Berland S, Puisségur M, Boulzaguet H, Rousseau M, Milet C, Lopez E (2007) Proteomics analysis of the nacre soluble and insoluble proteins from the oyster Pinctada margaritifera. Mar Biotechnol 9:638–649

    Article  PubMed  Google Scholar 

  • Berland S, Marie A, Duplat D, Milet C, Sire JY, Bédouet L (2011) Coupling proteomics and transcriptomics for the identification of novel and variant forms of mollusk shell proteins: a study with P. margaritifera. ChemBioChem 12:950–961

    Article  PubMed  CAS  Google Scholar 

  • Chait BT, Wang R, Beavis RC, Kent SB (1993) Protein ladder sequencing. Science 262:89–92

    Article  PubMed  CAS  Google Scholar 

  • Dovichi NJ (2004) Climbing the protein ladder. Nat Biotechnol 22:1242–1243

    Article  PubMed  CAS  Google Scholar 

  • Estes JA, Lindberg DR, Wray C (2005) Evolution of large body size in abalones (Haliotis): patterns and implications. Paleobiol 31:591–606

    Google Scholar 

  • Galindo J, Grahame JW, Butlin RK (2010) An EST-based genome scan using 454 sequencing in the marine snail Littorina saxatilis. J Evol Biol 23:2004–2016

    Article  PubMed  CAS  Google Scholar 

  • Gotliv BA, Kessler N, Sumerel JL, Morse DE, Tuross N, Addadi L, Weiner S (2005) Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. ChemBioChem 6:304–314

    Article  PubMed  CAS  Google Scholar 

  • Jackson DJ, McDougall C, Green K, Simpson F, Wörheide G, Degnan BM (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40

    Article  PubMed  Google Scholar 

  • Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, Piquemal D, Degnan BM (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27:591–608

    Article  PubMed  CAS  Google Scholar 

  • Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, Zanella-Cléon I, Cochennec-Laureau N, Gueguen Y, Montagnani C (2010) Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11:613

    Article  PubMed  Google Scholar 

  • Kono M, Hayashi N, Samata T (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun 269:213–218

    Article  PubMed  CAS  Google Scholar 

  • Levi-Kalisman Y, Falini G, Addadi L, Weiner S (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J Struct Biol 135:8–17

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Tornatore P, King D, Orlando R, Weinberger SR (2001) Limited acid hydrolysis as a means of fragmenting proteins isolated upon ProteinChip Array surfaces. Proteomics 9:1172–1184

    Article  Google Scholar 

  • Mann K, Siedler F, Treccani L, Heinemann F, Fritz M (2007) Perlinhibin, a cysteine-, histidine-, and arginine-rich miniprotein from abalone (Haliotis laevigata) nacre, inhibits in vitro calcium carbonate crystallization. Biophys J 93:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Marie B, Luquet G, Bédouet L, Milet C, Guichard N, Medakovic D, Marin F (2008) Nacre calcification in the freshwter mussel Unio pictorum: carbonic anhydrase activity and purification of a 95 kDa calcium-binding glycoprotein. ChemBioChem 9:2515–2523

    Article  PubMed  CAS  Google Scholar 

  • Marie B, Marin F, Marie A, Bédouet L, Dubost L, Alcaraz G, Milet C, Luquet G (2009) Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus. ChemBioChem 10:1495–1506

    Article  PubMed  CAS  Google Scholar 

  • Marie B, Marie A, Jackson DJ, Dubost L, Degnan BM, Milet C, Marin F (2010) Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci 8:54

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Corstjens P, de Gaulejac B, de Vrind-De Jong E, Westbroek P (2000) Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). J Biol Chem 275:20667–20675

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroek P (2005) Caspartin and calprismin, two proteins of the shell calcitic prisms of the mediterranean fan mussel Pinna nobilis. J Biol Chem 280:33895–33908

    Article  PubMed  CAS  Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    Article  PubMed  CAS  Google Scholar 

  • Marxen JC, Nimtz M, Becker W, Mann K (2003) The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim Biophys Acta 1650:92–98

    PubMed  CAS  Google Scholar 

  • Michenfelder M, Fu G, Lawrence C, Weaver JC, Wustman BA, Taranto L, Evans JS, Morse DE (2003) Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers 70:522–533

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci 93:9657–9660

    Article  PubMed  CAS  Google Scholar 

  • Pereira-Mouriès L, Almeida M-J, Ribeiro C, Peduzzi J, Barthélemy M, Milet C, Lopez E (2002) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. A new insight in the biomineralization field. Eur J Biochem 269:4994–5003

    Article  PubMed  Google Scholar 

  • Sarashina I, Endo K (1998) Primary structure of a soluble matrix protein of scallop shell: implications for calcium carbonate biomineralization. Amer Mineral 83:1510–1515

    CAS  Google Scholar 

  • Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, Mikoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Belcher AM, Hansma PK, Stucky GD, Morse DE (1997) Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272:32472–32481

    Article  PubMed  CAS  Google Scholar 

  • Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1103

    PubMed  CAS  Google Scholar 

  • Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387:563–564

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390

    Article  PubMed  CAS  Google Scholar 

  • Takagi R, Miyashita T (2010) Prismim: a new matrix protein family in the Japanese pearl oyster (Pinctada fucata) involved in prismatic layer formation. Zool Sci 27:416–426

    Article  PubMed  CAS  Google Scholar 

  • Treccani L, Mann K, Heinemann F, Fritz M (2006) Perlwapin, an abalone nacre protein with three four-disulfide core (whey acidic protein) domains, inhibits the growth of calcium carbonate crystals. Biophys J 91:2601–2608

    Article  PubMed  CAS  Google Scholar 

  • Trommsdorff M, Borg JP, Margolis B, Herz J (1998) Interaction of cytosolic adaptor proteins with neuronal apolipoprotein E receptors and the amyloid precursor protein. J Biol Chem 273:33556–33560

    Article  PubMed  CAS  Google Scholar 

  • Weiss IM, Kaufmann S, Mann K, Fritz M (2000) Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochem Biophys Res Commun 267:17–21

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Nagai K, Morimoto K, Miyamoto H (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B 144:254–262

    Article  PubMed  Google Scholar 

  • Zhang C, Zhang R (2006) Matrix proteins in the outer shells of molluscs. Mar Biotechnol 8:572–586

    Article  PubMed  Google Scholar 

  • Zhang C, Xie L, Huang J, Liu X, Zhang R (2006) A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem Biophys Res Commun 344:735–740

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed through the ‘ATM Biomineralization’ programme (2009–2012) supported by the French Ministry of Education and Research and the Muséum National d’Histoire Naturelle. Technical assistance of Lionel Dubost is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Berland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bédouet, L., Marie, A., Berland, S. et al. Proteomic Strategy for Identifying Mollusc Shell Proteins Using Mild Chemical Degradation and Trypsin Digestion of Insoluble Organic Shell Matrix: A Pilot Study on Haliotis tuberculata . Mar Biotechnol 14, 446–458 (2012). https://doi.org/10.1007/s10126-011-9425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9425-0

Keywords

Navigation