Skip to main content
Log in

Metagenomic Analysis of 0.2-μm-Passable Microorganisms in Deep-Sea Hydrothermal Fluid

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

We pyrosequenced the bulk DNA extracted from microorganisms that passed through 0.2-μm-pore-size filters and trapped by 0.1-μm-pore-size filters in the hydrothermal fluid of the Mariana Trough. Using the 454-FLX sequencer, we generated 202,648 sequences with an average length of 173.8 bases. Functional profiles were assigned by the SEED Annotation Engine. In the metagenome of the 0.2-μm-passable microorganisms, genes related to membrane function, including potassium homeostasis classified as membrane transport, and multidrug-resistance efflux pumps classified as virulence, were dominant. There was a higher proportion of genes pertinent to the subsystem of membrane transport in our metagenomic library than in other oceanic and hydrothermal vent metagenomes. Genes associated with a RND-type efflux transporter for exogenous substances were specifically identified in the present study. After a comparative analysis with the genome of the known ultramicrobacterium Sphingopyxis alaskensis RB2256, we discovered 1,542 cases of significant hits (E < 1 × 10−2) in our metagenome, and 1,172 of those were related to the DNA repair protein RadA. In this way, the microbial functional profile of 0.2-μm-passable fraction in the present study differs from oceanic metagenomes in the 0.2-μm-trapped fractions and hydrothermal vent metagenomes reported in previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abulencia CB, Wyborski DL, Garcia JA, Podar M, Chen W, Chang SH, Chang HW, Watson D, Brodie EL, Hazen TC et al (2006) Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72:3291–3301

    Article  PubMed  CAS  Google Scholar 

  • Beam CE, Saveson CJ, Lovett ST (2002) Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol 184:6836–6844

    Article  PubMed  CAS  Google Scholar 

  • Beja O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, Villacorta R, Amjadi M, Garrigues C, Jovanovich SB et al (2000) Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2:516–529

    Article  PubMed  CAS  Google Scholar 

  • Boenigk J, Stadler P, Wiedlroither A, Hahn MW (2004) Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70:5787–5793

    Article  PubMed  CAS  Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99:14250–14255

    Article  PubMed  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA et al (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–296

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  PubMed  CAS  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, ECJr A, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  PubMed  Google Scholar 

  • Elsaied HE, Sato M, Naganuma T (2001) Viable cytophaga-like bacterium in the 0.2 microm-filtrate seawater. Syst Appl Microbiol 24:618–622

    Article  PubMed  CAS  Google Scholar 

  • Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL, Crawford RL (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Appl Environ Microbiol 71:2016–2025

    Article  PubMed  CAS  Google Scholar 

  • Gamo T (1995) Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water–rock interaction: a review. In: Sakai H, Nozaki Y (eds) Biogeochemical processes and ocean flux in the Western Pacific. Terra Scientific Publishing Co (TERRAPUB), Tokyo, pp 425–451

    Google Scholar 

  • Geissinger O, Herlemann DP, Morschel E, Maier UG, Brune A (2009) The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol 75:2831–2840

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SJ, Hayakawa DH, Tripp HJ, Stingl U, Givan SA et al (2008) The small genome of an abundant coastal ocean methylotroph. Environ Microbiol 10:1771–1782

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Alvarez V, Teal TK, Schmidt TM (2009) Systematic artifacts in metagenomes from complex microbial communities. Isme J 3:1314–1317

    Article  PubMed  Google Scholar 

  • Hahn MW (2003) Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW (2004) Broad diversity of viable bacteria in ‘sterile’ (0.2 microm) filtered water. Res Microbiol 155:688–691

    Article  PubMed  Google Scholar 

  • Hahn MW, Lunsdorf H, Wu Q, Schauer M, Hofle MG, Boenigk J, Stadler P (2003) Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69:1442–1451

    Article  PubMed  CAS  Google Scholar 

  • Hahn MW, Stadler P, Wu QL, Pockl M (2004) The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390

    Article  PubMed  CAS  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305:1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Haller CM, Rolleke S, Vybiral D, Witte A, Velimirov B (1999) Investigation of 0.2 μm filterable bacteria from the Western Mediterranean Sea using a molecular approach: dominance of potential starvation forms. FEMS Microbiol Ecol 31:153–161

    Google Scholar 

  • Holden JF, Adams MW (2003) Microbe–metal interactions in marine hydrothermal environments. Curr Opin Chem Biol 7:160–165

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481–483

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi J, Yamanaka T, Kimura H, Hirota A, Toki T, Tsunogai U, Gamo T, Utsumi M, Roe K, Miyabe S, Okamura K (2004) Geochemistry of hydrothermal fluids from south Mariana backarc spreading center. EOS Trans AGU, 85(49), Fall Meet Suppl, Abstract V44A-05.

  • Jannasch HW (1995) Microbial interactions with hydrothermal fluids. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems. American Geophysical, Union Geophysical Monograph 91, Washington, pp 273–296

    Google Scholar 

  • Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UV-B radiation. Appl Environ Microbiol 65:3820–3827

    PubMed  CAS  Google Scholar 

  • Kieft TL (2000) Size matters: dwarf cells in soil and subsurface terrestrial environments. In: Colwell RR, Grimes DJ (eds) Non-culturable microorganisms in the environment. American Society for Microbiology, Washington, pp 19–46

    Google Scholar 

  • Maniloff J (1997) Nannobacteria: size limits and evidence. Science 276:1776, author reply 1777

    Article  PubMed  CAS  Google Scholar 

  • Martín-Cuadrado AB, Lopez-Garcia P, Alba JC, Moreira D, Monticelli L et al (2007) Metagenomics of the deep mediterranean, a warm bathypelagic habitat. PLoS ONE 2:e914

    Article  PubMed  Google Scholar 

  • Matallana-Surget S, Joux F, Raftery MJ, Cavicchioli R (2009) The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics. Environ Microbiol 11:2660–2675

    Article  PubMed  CAS  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi T, Iwatsuki T, Naganuma T (2005) Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol 71:1084–1088

    Article  PubMed  CAS  Google Scholar 

  • Naganuma T, Miyoshi T, Kimura H (2007) Phylotype diversity of deep-sea hydrothermal vent prokaryotes trapped by 0.2- and 0.1-microm-pore-size filters. Extremophiles 11:637–646

    Article  PubMed  Google Scholar 

  • Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol 32:617–622

    PubMed  CAS  Google Scholar 

  • Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    Article  PubMed  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  PubMed  CAS  Google Scholar 

  • Raghunathan A, Ferguson HR Jr, Bornarth CJ, Song W, Driscoll M, Lasken RS (2005) Genomic DNA amplification from a single bacterium. Appl Environ Microbiol 71:3342–3347

    Article  PubMed  CAS  Google Scholar 

  • Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu DY, Eisen JA, Hoffman JM, Remington K et al (2007) The sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. Plos Biology 5:398–431

    Article  CAS  Google Scholar 

  • Schut F, Devries EJ, Gottschal JC, Robertson BR, Harder W et al (1993) Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl Environ Microbiol 59:2150–2160

    PubMed  CAS  Google Scholar 

  • Thurber RV, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, Dinsdale E, Kelly L, Rohwer F (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  CAS  Google Scholar 

  • Torrella F, Morita RY (1981) Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol 41:518–527

    PubMed  CAS  Google Scholar 

  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  • Velimirov B (2001) Nanobacteria, ultramicrobacteria and starvation forms: a search for the smallest metabolizing bacterium. Microbes Environ 16:67–77

    Article  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

  • Vybiral D, Denner EB, Haller CM, Busse HJ, Witte A, Hofle MG, Velimirov B (1999) Polyphasic classification of 0.2 microm filterable bacteria from the western Mediterranean Sea. Syst Appl Microbiol 22:635–646

    PubMed  Google Scholar 

  • Walderhaug MO, Polarek JW, Voelkner P, Daniel JM, Hesse JE et al (1992) Kdpd and Kdpe, proteins that control expression of the kdpABC Operon, are members of the two-component sensor-effector class of regulators. J Bacteriol 174:2152–2159

    PubMed  CAS  Google Scholar 

  • Wang Y, Hammes F, Boon N, Egli T (2007) Quantification of the filterability of freshwater bacteria through 0.45, 0.22, and 0.1 microm pore size filters and shape-dependent enrichment of filterable bacterial communities. Environ Sci Technol 41:7080–7086

    Article  PubMed  CAS  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719

    Article  PubMed  CAS  Google Scholar 

  • Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takeyama H, Matsunaga T (2006) Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase. Environ Microbiol 8:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, Church GM (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24:680–686

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are obliged to Dr. Motoo Utusmi for cruise opportunities and to the crews and operation teams of RV Yokosuka and DSV Shinkai 6500, Japan Agency for Marine-Earth Science and Technology, for sample collection and onboard assistance. We are very much obliged to Dr. Ryo Kaneko, who filtered deep-sea hydrothermal fluid onboard the ship. This work was supported by the Special Coordination Fund “Archaean Park Project” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan; the Fund “Construct the Genetic Resource Library of Unidentified Microbes Based on Genome Information” from the New Energy and Industrial Technology Development Organization, Japan; and Grants-in-Aid for Scientific Research (17657032) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Naganuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, R., Abe, T., Takeyama, H. et al. Metagenomic Analysis of 0.2-μm-Passable Microorganisms in Deep-Sea Hydrothermal Fluid. Mar Biotechnol 13, 900–908 (2011). https://doi.org/10.1007/s10126-010-9351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9351-6

Keywords

Navigation