Skip to main content

Advertisement

Log in

Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design

  • Review
  • Invited Review of Special Issue on “Organic Photovoltaic Polymers”
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Flexibility is the most prominent advantage of organic solar cells (OSCs) compared with traditional photovoltaic devices, showing an irreplaceable commercial potential. Currently, the maximum power conversion efficiencies (PCEs) of single-junction OSCs have been over 19% and 16% upon rigid and flexible substrates, respectively, which meet the criteria for commercial application. Extensive research efforts are under way, such as device configuration design, interface/photosensitive layer synthesis, transparent electrode modification and printing technology innovation, however, the reasonable selection of printing technologies, the huge performance loss of large-area printing process and the structural design of flexible modules are still the bottlenecks, limiting the commercialization of OSCs. This review focuses on the technical challenges and rational modular configuration design for printing preparation of flexible high-efficiency large-area organic devices, from the aspects of the functional layer material selection, printing process research status and large-scale efficiency losses. These will promote the integrated applications of printable organic semiconductor materials for next-generation clean energy and appeal extensive attentions in wearable electronics, building-integrated photovoltaics and Internet of Things, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yao, H.; Ye, L.; Zhang, H.; Li, S.; Zhang, S.; Hou, J. Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 2016, 116, 7397.

    Article  CAS  Google Scholar 

  2. Li, Y. Molecular design of photovoltaic materials for polymer solar cells: towards suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723–733.

    Article  CAS  Google Scholar 

  3. Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photon. 2012, 6, 153–161.

    Article  CAS  Google Scholar 

  4. Wang, G.; Adil, M. A.; Zhang, J.; Wei, Z. Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.

    Article  CAS  Google Scholar 

  5. Li, Y.; Xu, G.; Cui, C.; Li, Y. Flexible and semitransparent organic solar cells. Adv. Energy Mater. 2018, 8, 1701791.

    Article  Google Scholar 

  6. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  7. Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205.

    Article  CAS  Google Scholar 

  8. An, Q.; Wang, J.; Gao, W.; Ma, X.; Hu, Z.; Gao, J.; Xu, C.; Hao, M.; Zhang, X.; Yang, C.; Zhang, F. Alloy-like ternary polymer solar cells with over 17.2% efficiency. Sci. Bull. 2020, 65, 538–545.

    Article  CAS  Google Scholar 

  9. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  10. Chen, H.; Zhao, T.; Li, L.; Tan, P.; Lai, H.; Zhu, Y.; Lai, X.; Han, L.; Zheng, N.; Guo, L.; He, F. 17.6%-Efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor. Adv. Mater. 2021, 33, 2102778.

    Article  CAS  Google Scholar 

  11. Ning, H.; Jiang, Q.; Han, P.; Lin, M.; Zhang, G.; Chen, J.; Chen, H.; Zeng, S.; Gao, J.; Liu, J.; He, F.; Wu, Q. Manipulating the solubility properties of polymer donors for high-performance layer-by-layer processed organic solar cells. Energy Environ. Sci. 2021, 14, 5919–5928.

    Article  CAS  Google Scholar 

  12. Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420.

    Article  CAS  Google Scholar 

  13. Sun, R.; Wu, Q.; Guo, J.; Wang, T.; Wu, Y.; Qiu, B.; Luo, Z.; Yang, W.; Hu, Z.; Guo, J.; Shi, M.; Yang, C.; Huang, F.; Li, Y.; Min, J. A layer-by-layer architecture for printable organic solar cells overcoming the scaling lag of module efficiency. Joule 2020, 4, 407–419.

    Article  CAS  Google Scholar 

  14. Zhang, L.; Lin, B.; Hu, B.; Xu, X.; Ma, W. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability. Adv. Mater. 2018, 30, 1800343.

    Article  Google Scholar 

  15. Meng, X.; Zhang, L.; Xie, Y.; Hu, X.; Xing, Z.; Huang, Z.; Liu, C.; Tan, L.; Zhou, W.; Sun, Y.; Ma, W.; Chen, Y. A general approach for lab-to-manufacturing translation on flexible organic solar cells. Adv. Mater. 2019, 1903649, 1903649.

    Article  Google Scholar 

  16. Ye, L.; Xiong, Y.; Zhang, Q.; Li, S.; Wang, C.; Jiang, Z.; Hou, J.; You, W.; Ade, H. Surpassing 10% efficiency benchmark for nonfullerene organic solar cells by scalable coating in air from single nonhalogenated solvent. Adv. Mater. 2018, 30, 1705485.

    Article  Google Scholar 

  17. Sun, R.; Guo, J.; Sun, C.; Wang, T.; Luo, Z.; Zhang, Z.; Jiao, X.; Tang, W.; Yang, C.; Li, Y.; Min, J. A universal layer-by-layer solution-processing approach for efficient non-fullerene organic solar cells. Energy Environ. Sci. 2019, 12, 384–395.

    Article  CAS  Google Scholar 

  18. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. 2.5% Efficient organic plastic solar cells. Appl. Phys. Lett. 2001, 78, 841–843.

    Article  CAS  Google Scholar 

  19. Yakimov, A.; Forrest, S. R. High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Appl. Phys. Lett. 2002, 80, 1667–1669.

    Article  CAS  Google Scholar 

  20. Peumans, P.; Yakimov, A.; Forrest, S. R. Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 2003, 93, 3693–3723.

    Article  CAS  Google Scholar 

  21. Uchida, S.; Xue, J.; Rand, B. P.; Forrest, S. R. Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer. Appl. Phys. Lett. 2004, 84, 4218–4220.

    Article  CAS  Google Scholar 

  22. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864–868.

    Article  CAS  Google Scholar 

  23. Kawano, K.; Ito, N.; Nishimori, T.; Sakai, J. Open circuit voltage of stacked bulk heterojunction organic solar cells. Appl. Phys. Lett. 2006, 88, 073514.

    Article  Google Scholar 

  24. Zhou, Y.; Wang, X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X.; Stein, Y.; Gleason, K. K.; Wardle, B. L. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 2019, 31, 1901916.

    Article  Google Scholar 

  25. Thompson, B. C.; Fréchet, J. M. J. Polymer-fullerene composite solar cells. Angew. Chemie. Int. Ed. 2008, 47, 58–77.

    Article  CAS  Google Scholar 

  26. Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photonics 2009, 3, 649–653.

    Article  CAS  Google Scholar 

  27. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 2010, 22, 135–138.

    Article  Google Scholar 

  28. Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J. Am. Chem. Soc. 2011, 133, 4625–4631.

    Article  CAS  Google Scholar 

  29. He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photon. 2012, 6, 591–595.

    Article  Google Scholar 

  30. Liu, Y.; Chen, C. C.; Hong, Z.; Gao, J.; Michael Yang, Y.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci. Rep. 2013, 3, 3356.

    Article  CAS  Google Scholar 

  31. Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293.

    Article  CAS  Google Scholar 

  32. Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027.

    Article  CAS  Google Scholar 

  33. Li, S.; Ye, L.; Zhao, W.; Zhang, S.; Mukherjee, S.; Ade, H.; Hou, J. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 2016, 28, 9423–9429.

    Article  CAS  Google Scholar 

  34. Xiao, Z.; Jia, X.; Ding, L. Ternary organic solar cells offer 14% power conversion efficiency. Sci. Bull. 2017, 62, 1562–1564.

    Article  CAS  Google Scholar 

  35. Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency. Nat. Energy 2018, 3, 422.

    Article  CAS  Google Scholar 

  36. Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515.

    Article  Google Scholar 

  37. Qin, J.; Chen, Z.; Bi, P.; Yang, Y.; Zhang, J.; Huang, Z.; Wei, Z.; An, C.; Yao, H.; Hao, X.; Zhang, T.; Cui, Y.; Hong, L.; Liu, C.; Zu, Y.; He, C.; Hou, J. 17% Efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy Environ. Sci. 2021, 14, 5903–5910.

    Article  CAS  Google Scholar 

  38. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    Article  CAS  Google Scholar 

  39. Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen, Y. Solution-processed and high-performance organic solar cells using small molecules with a benzodithiophene unit. J. Am. Chem. Soc. 2013, 135, 8484–8487.

    Article  CAS  Google Scholar 

  40. Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 2016, 7, 13740.

    Article  CAS  Google Scholar 

  41. Krebs, F. C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412.

    Article  CAS  Google Scholar 

  42. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 2003, 13, 85–88.

    Article  CAS  Google Scholar 

  43. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151.

    Article  CAS  Google Scholar 

  44. Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734–4739.

    Article  CAS  Google Scholar 

  45. Fan, Q.; Su, W.; Wang, Y.; Guo, B.; Jiang, Y.; Guo, X.; Liu, F.; Russell, T. P.; Zhang, M.; Li, Y. Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency. Sci. China Chem. 2018, 61, 531–537.

    Article  CAS  Google Scholar 

  46. Fan, B.; Zhang, D.; Li, M.; Zhong, W.; Zeng, Z.; Ying, L.; Huang, F.; Cao, Y. Achieving over 16% efficiency for single-junction organic solar cells. Sci. China Chem. 2019, 62, 746–752.

    Article  CAS  Google Scholar 

  47. Liu, M.; Fan, P.; Hu, Q.; Russell, T. P.; Liu, Y. Naphthalene-diimide-based ionenes as universal interlayers for efficient organic solar cells. Angew. Chem. Int. Ed. 2020, 59, 18131–18135.

    Article  CAS  Google Scholar 

  48. Cui, Y.; Yao, H. F.; Yang, C. Y.; Zhang, S. Q.; Hou, J. H. Organic solar cells with an efficiency approaching 15%. Acta Polymerica Sinica (in Chinese) 2018, 223–230.

  49. Green, M. A.; Emery, K.; King, D. L.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 34). Prog. Photovolt. Res. Appl. 2009, 17, 320–326.

    Article  CAS  Google Scholar 

  50. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 36). Prog. Photovolt. Res. Appl. 2010, 18, 346–352.

    Article  Google Scholar 

  51. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 38). Prog. Photovolt. Res. Appl. 2011, 19, 565–572.

    Article  Google Scholar 

  52. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 40). Prog. Photovolt. Res. Appl. 2012, 20, 606–614.

    Article  Google Scholar 

  53. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 42). Prog. Photovolt. Res. Appl. 2013, 21, 827–837.

    Article  Google Scholar 

  54. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 32). Prog. Photovolt. Res. Appl. 2008, 16, 435–440.

    Article  CAS  Google Scholar 

  55. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9.

    Article  Google Scholar 

  56. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 47). Prog. Photovolt. Res. Appl. 2016, 24, 3–11.

    Article  Google Scholar 

  57. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (version 48). Prog. Photovolt. Res. Appl. 2016, 24, 905–913.

    Article  Google Scholar 

  58. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 29). Prog. Photovolt. Res. Appl. 2007, 15, 35–40.

    Article  CAS  Google Scholar 

  59. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (version 49). Prog. Photovolt. Res. Appl. 2017, 25, 3–13.

    Article  Google Scholar 

  60. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 2018, 26, 3–12.

    Article  Google Scholar 

  61. Lungenschmied, C.; Dennler, G.; Neugebauer, H.; Sariciftci, S. N.; Glatthaar, M.; Meyer, T.; Meyer, A. Flexible, long-lived, large-area, organic solar cells. Sol. Energy Mater. Sol. Cells 2007, 91, 379–384.

    Article  CAS  Google Scholar 

  62. Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 2009, 19, 5442–5451.

    Article  CAS  Google Scholar 

  63. Zhao, F.; Zhang, H.; Zhang, R.; Yuan, J.; He, D.; Zou, Y.; Gao, F. Emerging approaches in enhancing the efficiency and stability in non-fullerene organic solar cells. Adv. Energy Mater. 2020, 10, 2002746.

    Article  CAS  Google Scholar 

  64. Yue, W.; Larsen-Olsen, T. T.; Hu, X.; Shi, M.; Chen, H.; Hinge, M.; Fojan, P.; Krebs, F. C.; Yu, D. Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor-acceptor polymers. J. Mater. Chem. A 2013, 1, 1785–1793.

    Article  CAS  Google Scholar 

  65. Machui, F.; Lucera, L.; Spyropoulos, G. D.; Cordero, J.; Ali, A. S.; Kubis, P.; Ameri, T.; Voigt, M. M.; Brabec, C. J. Large area slot-die coated organic solar cells on flexible substrates with non-halogenated solution formulations. Sol. Energy Mater. Sol. Cells 2014, 128, 441–446.

    Article  CAS  Google Scholar 

  66. Fan, X.; Xu, B.; Liu, S.; Cui, C.; Wang, J.; Yan, F. Transfer-printed PEDOT:PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl. Mater. Interfaces 2016, 8, 14029–14036.

    Article  CAS  Google Scholar 

  67. Gasparini, N.; Lucera, L.; Salvador, M.; Prosa, M.; Spyropoulos, G. D.; Kubis, P.; Egelhaaf, H. J.; Brabec, C. J.; Ameri, T. Highperformance ternary organic solar cells with thick active layer exceeding 11% efficiency. Energy Environ. Sci. 2017, 10, 885–892.

    Article  CAS  Google Scholar 

  68. Song, S.; Lee, K. T.; Koh, C. W.; Shin, H.; Gao, M.; Woo, H. Y.; Vak, D.; Kim, J. Y. Hot slot die coating for additive-free fabrication of high performance roll-to-roll processed polymer solar cells. Energy Environ. Sci. 2018, 11, 3248–3255.

    Article  CAS  Google Scholar 

  69. Sun, Y.; Chang, M.; Meng, L.; Wan, X.; Gao, H.; Zhang, Y.; Zhao, K.; Sun, Z.; Li, C.; Liu, S.; Wang, H.; Liang, J.; Chen, Y. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2019, 2, 513–520.

    Article  CAS  Google Scholar 

  70. Gillett, A. J.; Privitera, A.; Dilmurat, R.; Karki, A.; Qian, D.; Pershin, A.; Londi, G.; Myers, W. K.; Lee, J.; Yuan, J.; Ko, S. J.; Riede, M. K.; Gao, F.; Bazan, G. C.; Rao, A.; Nguyen, T. Q.; Beljonne, D.; Friend, R. H. The role of charge recombination to triplet excitons in organic solar cells. Nature 2021, 597, 666–671.

    Article  CAS  Google Scholar 

  71. Sun, L.; Zeng, W.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Wang, W.; Liu, T.; Jiang, X.; Jiang, Y.; Zhou, Y. Flexible all-solution-processed organic solar cells with high-performance nonfullerene active layers. Adv. Mater. 2020, 32, 1907840.

    Article  CAS  Google Scholar 

  72. Chen, Z.; Song, W.; Yu, K.; Ge, J.; Zhang, J.; Xie, L.; Peng, R.; Ge, Z. Small-molecular donor guest achieves rigid 18.5% and flexible 15.9% efficiency organic photovoltaic via fine-tuning microstructure morphology. Joule 2021, 5, 2395–2407.

    Article  CAS  Google Scholar 

  73. Song, W.; Yu, K.; Zhou, E.; Xie, L.; Hong, L.; Ge, J.; Zhang, J.; Zhang, X.; Peng, R.; Ge, Z. Crumple durable ultraflexible organic solar cells with an excellent power-per-weight performance. Adv. Funct. Mater. 2021, 31, 2102694.

    Article  CAS  Google Scholar 

  74. Wan, J.; Xia, Y.; Fang, J.; Zhang, Z.; Xu, B.; Wang, J.; Ai, L.; Song, W.; Hui, K. N.; Fan, X.; Li, Y. Solution-processed transparent conducting electrodes for flexible organic solar cells with 16. 61% efficiency. Nano-Micro Lett. 2021, 13, 44.

    Article  Google Scholar 

  75. Yan, T.; Song, W.; Huang, J.; Peng, R.; Huang, L.; Ge, Z. 16.67% Rigid and 14. 06% flexible organic solar cells enabled by ternary heterojunction strategy. Adv. Mater. 2019, 31, 1902210.

    Article  Google Scholar 

  76. Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. H.; Kim, D. G.; Kim, J. K.; Park, J.; Kang, Y. C.; Heo, J.; Jin, S. H.; Park, J. H.; Kang, J. W. Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.

    Article  CAS  Google Scholar 

  77. Qin, F.; Sun, L.; Chen, H.; Liu, Y.; Lu, X.; Wang, W.; Liu, T.; Dong, X.; Jiang, P.; Jiang, Y.; Wang, L.; Zhou, Y. 54 cm2 Large-area flexible organic solar modules with efficiency above 13%. Adv. Mater. 2021, 33, 2103017.

    Article  CAS  Google Scholar 

  78. Han, Y.; Hu, Z.; Zha, W.; Chen, X.; Yin, L.; Guo, J.; Li, Z.; Luo, Q.; Su, W.; Ma, C. Q. 12.42% Monolithic 25.42 cm2 flexible organic solar cells enabled by an amorphous ITO-modified metal grid electrode. Adv. Mater. 2022, 34, 2110276.

    Article  CAS  Google Scholar 

  79. Dong, S.; Jia, T.; Zhang, K.; Jing, J.; Huang, F. Single-component non-halogen solvent-processed high-performance organic solar cell module with efficiency over 14%. Joule 2020, 4, 2004–2016.

    Article  CAS  Google Scholar 

  80. Wang, G.; Zhang, J.; Yang, C.; Wang, Y.; Xing, Y.; Adil, M. A.; Yang, Y.; Tian, L.; Su, M.; Shang, W.; Lu, K.; Shuai, Z.; Wei, Z. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices. Adv. Mater. 2020, 32, 2005153.

    Article  CAS  Google Scholar 

  81. Zhao, W.; Zhang, Y.; Zhang, S.; Li, S.; He, C.; Hou, J. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C 2019, 7, 3206–3211.

    Article  CAS  Google Scholar 

  82. Zhang, C.; Luo, Q.; Wu, H.; Li, H.; Lai, J.; Ji, G.; Yan, L.; Wang, X.; Zhang, D.; Lin, J.; Chen, L.; Yang, J.; Ma, C. Roll-to-roll microgravure printed large-area zinc oxide thin film as the electron transport layer for solution-processed polymer solar cells. Org. Electron. 2017, 45, 190–197.

    Article  CAS  Google Scholar 

  83. Zhao, W.; Zhang, S.; Zhang, Y.; Li, S.; Liu, X.; He, C.; Zheng, Z.; Hou, J. Environmentally friendly solvent-processed organic solar cells that are highly efficient and adaptable for the blade-coating method. Adv. Mater. 2018, 30, 1704837.

    Article  Google Scholar 

  84. Mao, L.; Tong, J.; Xiong, S.; Jiang, F.; Qin, F.; Meng, W.; Luo, B.; Liu, Y.; Li, Z.; Jiang, Y.; Fuentes-Hernandez, C.; Kippelen, B.; Zhou, Y. Flexible large-area organic tandem solar cells with high defect tolerance and device yield. J. Mater. Chem. A 2017, 5, 3186–3192.

    Article  CAS  Google Scholar 

  85. Gu, X.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y.; Li, Y.; Lin, H.; Schroeder, B. C.; Yan, H.; Molina-Lopez, F.; Tassone, C. J.; Wang, C.; Mannsfeld, S. C. B.; Yan, H.; Zhao, D.; Toney, M. F.; Bao, Z. Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Adv. Energy Mater. 2017, 7, 1602742.

    Article  Google Scholar 

  86. Shin, I.; Ahn, H. ju; Yun, J. H.; Jo, J. W.; Park, S.; Joe, S. Y.; Bang, J.; Son, H. J. High-performance and uniform 1 cm2 polymer solar cells with D1-A-D2-A-type random terpolymers. Adv. Energy Mater. 2018, 8, 1870028.

    Article  Google Scholar 

  87. Dong, S.; Zhang, K.; Jia, T.; Zhong, W.; Wang, X.; Huang, F.; Cao, Y. Suppressing the excessive aggregation of nonfullerene acceptor in blade-coated active layer by using n-type polymer additive to achieve large-area printed organic solar cells with efficiency over 15%. EcoMat 2019, 1, e12006.

    Article  CAS  Google Scholar 

  88. Dong, S.; Zhang, K.; Xie, B.; Xiao, J.; Yip, H. L.; Yan, H.; Huang, F.; Cao, Y. High-performance large-area organic solar cells enabled by sequential bilayer processing via nonhalogenated solvents. Adv. Energy Mater. 2019, 9, 1802832.

    Article  Google Scholar 

  89. Guo, J.; Min, J. A cost analysis of fully solution-processed ITO-free organic solar modules. Adv. Energy Mater. 2019, 9, 1802521.

    Article  Google Scholar 

  90. Ji, G.; Zhao, W.; Wei, J.; Yan, L.; Han, Y.; Luo, Q.; Yang, S.; Hou, J.; Ma, C. Q. 12.88% Efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer. J. Mater. Chem. A 2019, 7, 212–220.

    Article  CAS  Google Scholar 

  91. Xing, Z.; Meng, X.; Sun, R.; Hu, T.; Huang, Z.; Min, J.; Hu, X.; Chen, Y. An effective method for recovering nonradiative recombination loss in scalable organic solar cells. Adv. Funct. Mater. 2020, 30, 2000417.

    Article  CAS  Google Scholar 

  92. Kang, Q.; Ye, L.; Xu, B.; An, C.; Stuard, S. J.; Zhang, S.; Yao, H.; Ade, H.; Hou, J. A printable organic cathode interlayer enables over 13% efficiency for 1-cm2 organic solar cells. Joule 2019, 3, 227–239.

    Article  CAS  Google Scholar 

  93. Dong, X.; Shi, P.; Sun, L.; Li, J.; Qin, F.; Xiong, S.; Liu, T.; Jiang, X.; Zhou, Y. Flexible nonfullerene organic solar cells based on embedded silver nanowires with an efficiency up to 11. 6%. J. Mater. Chem. A 2019, 7, 1989–1995.

    Article  CAS  Google Scholar 

  94. Chen, X.; Xu, G.; Zeng, G.; Gu, H.; Chen, H.; Xu, H.; Yao, H.; Li, Y.; Hou, J.; Li, Y. Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 2020, 32, 1908478.

    Article  CAS  Google Scholar 

  95. Jia, Z.; Chen, Z.; Chen, X.; Yao, J.; Yan, B.; Sheng, R.; Zhu, H.; Yang, Y. 19.34 cm2 Large-area quaternary organic photovoltaic module with 12.36% certified efficiency. Photonics Res. 2021, 9, 324–330.

    Article  Google Scholar 

  96. Dong, S.; Zhang, K.; Liu, X.; Yin, Q.; Yip, H. L.; Huang, F.; Cao, Y. Efficient organic-inorganic hybrid cathode interfacial layer enabled by polymeric dopant and its application in large-area polymer solar cells. Sci. China Chem. 2019, 62, 67–73.

    Article  CAS  Google Scholar 

  97. Huang, K. M.; Lin, C. M.; Chen, S. H.; Li, C. S.; Hu, C. H.; Zhang, Y.; Meng, H. F.; Chang, C. Y.; Chao, Y. C.; Zan, H. W.; Huo, L.; Yu, P. Nonfullerene polymer solar cell with large active area of 216 cm2 and high power conversion efficiency of 7.7%. Sol. RRL 2019, 3, 1900071.

    Article  Google Scholar 

  98. Jiang, X.; Sun, L.; Wang, W.; Qin, F.; Xie, C.; Hu, L.; Zhou, Y. 10 cm2 Nonfullerene solar cells with efficiency over 10% using H:XMoO3-assisted growth of silver electrodes with a low threshold thickness of 4 nm. J. Mater. Chem. A 2020, 8, 69–76.

    Article  CAS  Google Scholar 

  99. Huang, K. M.; Wong, Y. Q.; Lin, M. C.; Chen, C. H.; Liao, C. H.; Chen, J. Y.; Huang, Y. H.; Chang, Y. F.; Tsai, P. T.; Chen, S. H.; Liao, C. T.; Lee, Y. C.; Hong, L.; Chang, C. Y.; Meng, H. F.; Ge, Z.; Zan, H. W.; Horng, S. F.; Chao, Y. C.; Wong, H. Y. Highly efficient and stable organic solar cell modules processed by blade coating with 5. 6% module efficiency and active area of 216 cm2. Prog. Photovolt. Res. Appl. 2019, 27, 264–274.

    Article  CAS  Google Scholar 

  100. Strohm, S.; Machui, F.; Langner, S.; Kubis, P.; Gasparini, N.; Salvador, M.; McCulloch, I.; Egelhaaf, H. J.; Brabec, C. J. P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy Environ. Sci. 2018, 11, 2225–2234.

    Article  CAS  Google Scholar 

  101. Heeger, A. J. 25th Anniversary article: bulk heterojunction solar cells: understanding the mechanism of operation. Adv. Mater. 2014, 26, 10–28.

    Article  CAS  Google Scholar 

  102. Chen, L. X. Organic solar cells: recent progress and challenges. ACS Energy Lett. 2019, 4, 2537–2539.

    Article  CAS  Google Scholar 

  103. Song, Y.; Chang, S.; Gradecak, S.; Kong, J. Visibly-transparent organic solar cells on flexible substrates with all-graphene electrodes. Adv. Energy Mater. 2016, 6, 1600847.

    Article  Google Scholar 

  104. Koo, D.; Jung, S.; Seo, J.; Jeong, G.; Choi, Y.; Lee, J.; Lee, S. M.; Cho, Y.; Jeong, M.; Lee, J.; Oh, J.; Yang, C.; Park, H. Flexible organic solar cells over 15% efficiency with polyimide-integrated graphene electrodes. Joule 2020, 4, 1021–1034.

    Article  CAS  Google Scholar 

  105. Zuo, L.; Zhang, S.; Li, H.; Chen, H. Toward highly efficient large-area ITO-free organic solar cells with a conductance-gradient transparent electrode. Adv. Mater. 2015, 27, 6983–6989.

    Article  CAS  Google Scholar 

  106. Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C. Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater. 2020, 30, 2002529.

    Article  CAS  Google Scholar 

  107. Yin, L.; Li, Y.; Yao, X.; Wang, Y.; Jia, L.; Liu, Q.; Li, J.; Li, Y.; He, D. MXenes for solar cells. Nano-Micro Lett. 2021, 13, 78–94.

    Article  Google Scholar 

  108. Zeng, G.; Chen, W.; Chen, X.; Hu, Y.; Chen, Y.; Zhang, B.; Chen, H.; Sun, W.; Shen, Y.; Li, Y.; Yan, F.; Li, Y. Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc. 2022, 144, 8658–8668.

    Article  CAS  Google Scholar 

  109. Li, T.; Li, S.; Li, X.; Xu, Z.; Zhao, J.; Shi, Y.; Wang, Y.; Yu, R.; Liu, X.; Xu, Q.; Guo, W. A leaf vein-like hierarchical silver grids transparent electrode towards high-performance flexible electrochromic smart windows. Sci. Bull. 2020, 65, 225–232.

    Article  CAS  Google Scholar 

  110. Zilberberg, K.; Gasse, F.; Pagui, R.; Polywka, A.; Behrendt, A.; Trost, S.; Heiderhoff, R.; Görrn, P.; Riedl, T. Highly robust Indiumfree transparent conductive electrodes based on composites of silver nanowires and conductive metal oxides. Adv. Funct. Mater. 2014, 24, 1671–1678.

    Article  CAS  Google Scholar 

  111. Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43–48.

    Article  CAS  Google Scholar 

  112. Cai, W.; Zhu, Y.; Li, X.; Piner, R. D.; Ruoff, R. S. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 2009, 95, 2007–2010.

    Article  Google Scholar 

  113. Pang, S.; Hernandez, Y.; Feng, X.; Müllen, K. Graphene as transparent electrode material for organic electronics. Adv. Mater. 2011, 23, 2779–2795.

    Article  CAS  Google Scholar 

  114. Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for highperformance transparent conductors. Nano Lett. 2009, 9, 1949–1955.

    Article  CAS  Google Scholar 

  115. Liu, Z.; Parvez, K.; Li, R.; Dong, R.; Feng, X.; Müllen, K. Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors. Adv. Mater. 2015, 27, 669–675.

    Article  CAS  Google Scholar 

  116. Cai, G.; Darmawan, P.; Cui, M.; Wang, J.; Chen, J.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver grid/PEDOT:PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 1501882.

    Article  Google Scholar 

  117. Dong, Y.; Zou, Y.; Yuan, J.; Yang, H.; Wu, Y.; Cui, C.; Li, Y. Ternary polymer solar cells facilitating improved efficiency and stability. Adv. Mater. 2019, 31, 1904601.

    Article  CAS  Google Scholar 

  118. Zhang, C.; Ji, C.; Park, Y. B.; Guo, L. J. Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications. Adv. Opt. Mater. 2021, 9, 2001298.

    Article  CAS  Google Scholar 

  119. Pan, W.; Han, Y.; Wang, Z.; Gong, C.; Guo, J.; Lin, J.; Luo, Q.; Yang, S.; Ma, C. Q. An efficiency of 14.29% and 13. 08% for 1 cm2 and 4 cm2 flexible organic solar cells enabled by sol-gel ZnO and ZnO nanoparticle bilayer electron transporting layers. J. Mater. Chem. A 2021, 9, 16889–16897.

    Article  CAS  Google Scholar 

  120. Liu, T.; Sun, L.; Dong, X.; Jiang, Y.; Wang, W.; Xie, C.; Zeng, W.; Liu, Y.; Qin, F.; Hu, L.; Zhou, Y. Low-work-function PEDOT formula as a stable interlayer and cathode for organic solar cells. Adv. Funct. Mater. 2021, 31, 2107250.

    Article  CAS  Google Scholar 

  121. Shao, S.; Liu, J.; Bergqvist, J.; Shi, S.; Veit, C.; Würfel, U.; Xie, Z.; Zhang, F. In situ formation of MoO3 in PEDOT:PSS matrix: a facile way to produce a smooth and less hygroscopic hole transport layer for highly stable polymer bulk heterojunction solar cells. Adv. Energy Mater. 2013, 3, 349–355.

    Article  CAS  Google Scholar 

  122. Rafique, S.; Abdullah, S. M.; Mahmoud, W. E.; Al-Ghamdi, A. A.; Sulaiman, K. Stability enhancement in organic solar cells by incorporating V2O5 nanoparticles in the hole transport layer. RSC Adv. 2016, 6, 50043–50052.

    Article  CAS  Google Scholar 

  123. Yang, H.; Song, Q.; Lu, Z.; Guo, C.; Gong, C.; Hu, W.; Li, C. M. Electrochemically polymerized nanostructured poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) buffer layer for a high performance polymer solar cell. Energy Environ. Sci. 2010, 3, 1580–1586.

    Article  CAS  Google Scholar 

  124. Yun, J. M.; Yeo, J. S.; Kim, J.; Jeong, H. G.; Kim, D. Y.; Noh, Y. J.; Kim, S. S.; Ku, B. C.; Na, S. I. Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable Polymer solar cells. Adv. Mater. 2011, 23, 4923–4928.

    Article  CAS  Google Scholar 

  125. Kang, H.; Hong, S.; Lee, J.; Lee, K. Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 2012, 24, 3005–3009.

    Article  CAS  Google Scholar 

  126. Pan, F.; Sun, C.; Li, Y.; Tang, D.; Zou, Y.; Li, X.; Bai, S.; Wei, X.; Lv, M.; Chen, X.; Li, Y. Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy Environ. Sci. 2019, 12, 3400–3411.

    Article  CAS  Google Scholar 

  127. Zhang, J.; Xu, G.; Tao, F.; Zeng, G.; Zhang, M.; Yang, Y. (Michael); Li, Y.; Li, Y. Highly efficient semitransparent organic solar cells with color rendering index approaching 100. Adv. Mater. 2019, 31, 1807159.

    Article  Google Scholar 

  128. Kwon, J.; Takeda, Y.; Shiwaku, R.; Tokito, S.; Cho, K.; Jung, S. Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 2019, 10, 54.

    Article  CAS  Google Scholar 

  129. Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photon. 2020, 14, 300–305.

    Article  CAS  Google Scholar 

  130. Liu, L.; Kan, Y.; Gao, K.; Wang, J.; Zhao, M.; Chen, H.; Zhao, C.; Jiu, T.; Jen, A. K. Y.; Li, Y. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater. 2020, 32, 1907604.

    Article  CAS  Google Scholar 

  131. Liao, Q.; Kang, Q.; Yang, Y.; An, C.; Xu, B.; Hou, J. Tailoring and modifying an organic electron acceptor toward the cathode interlayer for highly efficient organic solar cells. Adv. Mater. 2020, 32, 1906557.

    Article  CAS  Google Scholar 

  132. Gao, J.; Gao, W.; Ma, X.; Hu, Z.; Xu, C.; Wang, X.; An, Q.; Yang, C.; Zhang, X.; Zhang, F. Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy Environ. Sci. 2020, 13, 958–967.

    Article  CAS  Google Scholar 

  133. Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y. Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%. Adv. Mater. 2021, 33, 2105301.

    Article  CAS  Google Scholar 

  134. Zhan, L.; Li, S.; Lau, T. K.; Cui, Y.; Lu, X.; Shi, M.; Li, C. Z.; Li, H.; Hou, J.; Chen, H. Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy Environ. Sci. 2020, 13, 635–645.

    Article  CAS  Google Scholar 

  135. Huang, W.; Jiang, Z.; Fukuda, K.; Jiao, X.; McNeill, C. R.; Yokota, T.; Someya, T. Efficient and mechanically robust ultraflexible organic solar cells based on mixed acceptors. Joule 2020, 4, 128–141.

    Article  CAS  Google Scholar 

  136. Lee, D. Y.; Na, S. I.; Kim, S. S. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 2016, 8, 1513–1522.

    Article  CAS  Google Scholar 

  137. Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 2019, 6, 1900813.

    Article  CAS  Google Scholar 

  138. Shen, T.; Binks, D.; Yuan, J.; Cao, G.; Tian, J. Enhanced-performance of self-powered flexible quantum dot photodetectors by a double hole transport layer structure. Nanoscale 2019, 11, 9626–9632.

    Article  CAS  Google Scholar 

  139. Feng, J.; Yang, Z.; Yang, D.; Ren, X.; Zhu, X.; Jin, Z.; Zi, W.; Wei, Q.; Liu, S. (Frank) E-beam evaporated Nb2O5 as an effective electron transport layer for large flexible perovskite solar cells. Nano Energy 2017, 36, 1–8.

    Article  Google Scholar 

  140. Zhang, J.; Xue, R.; Xu, G.; Chen, W.; Bian, G. Q.; Wei, C.; Li, Y.; Li, Y. Self-doping fullerene electrolyte-based electron transport layer for all-room-temperature-processed high-performance flexible polymer solar cells. Adv. Funct. Mater. 2018, 28, 1705847.

    Article  Google Scholar 

  141. Zhao, H.; Lin, B.; Xue, J.; Naveed, H. B.; Zhao, C.; Zhou, X.; Zhou, K.; Wu, H.; Cai, Y.; Yun, D.; Tang, Z.; Ma, W. Kinetics manipulation enables high-performance thick ternary organic solar cells via R2R-compatible slot-die coating. Adv. Mater. 2022, 34, 2105114.

    Article  CAS  Google Scholar 

  142. Søndergaard, R.; Manceau, M.; Jørgensen, M.; Krebs, F. C. New low-bandgap materials with good stabilities and efficiencies comparable to P3HT in R2R-coated solar cells. Adv. Energy Mater. 2012, 2, 415–418.

    Article  Google Scholar 

  143. Søndergaard, R.; Hösel, M.; Angmo, D.; Larsen-Olsen, T. T.; Krebs, F. C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 2012, 15, 36–49.

    Article  Google Scholar 

  144. Tavakoli, M. M.; Azzellino, G.; Hempel, M.; Lu, A. Y.; Martin-Martinez, F. J.; Zhao, J.; Yeo, J.; Palacios, T.; Buehler, M. J.; Kong, J. Synergistic roll-to-roll transfer and doping of CVD-graphene using parylene for ambient-stable and ultra-lightweight photovoltaics. Adv. Funct. Mater. 2020, 30, 2001924.

    Article  CAS  Google Scholar 

  145. Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; Meng, W.; Li, N.; Brabec, C. J.; Zhou, Y. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 2022, 7, 352–359.

    Article  CAS  Google Scholar 

  146. Fan, B.; Du, X.; Liu, F.; Zhong, W.; Ying, L.; Xie, R.; Tang, X.; An, K.; Xin, J.; Li, N.; Ma, W.; Brabec, C. J.; Huang, F.; Cao, Y. Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics. Nat. Energy 2018, 3, 1051.

    Article  CAS  Google Scholar 

  147. Wang, D.; Zhou, G.; Li, Y.; Yan, K.; Zhan, L.; Zhu, H.; Lu, X.; Chen, H.; Li, C. High-performance organic solar cells from non-halogenated solvents. Adv. Funct. Mater. 2022, 32, 2107827.

    Article  CAS  Google Scholar 

  148. Krebs, F. C.; Fyenbo, J.; Tanenbaum, D. M.; Gevorgyan, S. A.; Andriessen, R.; Van Remoortere, B.; Galagan, Y.; Jørgensen, M. The OE-A OPV demonstrator anno domini 2011. Energy Environ. Sci. 2011, 4, 4116–4123.

    Article  CAS  Google Scholar 

  149. Tang, X.; Wu, K.; Qi, X.; Kwon, H. J.; Wang, R.; Li, Z.; Ye, H.; Hong, J.; Choi, H. H.; Kong, H.; Lee, N. S.; Lim, S.; Jeong, Y. J.; Kim, S. Screen printing of silver and carbon nanotube composite inks for flexible and reliable organic integrated devices. ACS Appl. Nano Mater. 2022, 5, 4801–4811.

    Article  CAS  Google Scholar 

  150. Gevorgyan, S. A.; Madsen, M. V; Roth, B.; Corazza, M.; Hösel, M.; Søndergaard, R. R.; Jørgensen, M.; Krebs, F. C. Lifetime of organic photovoltaics: status and predictions. Adv. Energy Mater. 2016, 6, 1501208.

    Article  Google Scholar 

  151. Zhang, Y.; Liu, K.; Huang, J.; Xia, X.; Cao, J.; Zhao, G.; Fong, P. W. K.; Zhu, Y.; Yan, F.; Yang, Y.; Lu, X.; Li, G. Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating. Nat. Commun. 2021, 12, 4815.

    Article  CAS  Google Scholar 

  152. Zhang, D.; Fan, B.; Ying, L.; Li, N.; Brabec, C. J.; Huang, F.; Cao, Y. Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat 2021, 1, 4–23.

    Article  Google Scholar 

  153. Sun, Y.; Liu, T.; Kan, Y.; Gao, K.; Tang, B.; Li, Y. Flexible organic solar cells: progress and challenges. Small Sci. 2021, 1, 2100001.

    Article  CAS  Google Scholar 

  154. Bai, Y.; Zhao, C.; Zhang, S.; Zhang, S.; Yu, R.; Hou, J.; Tan, Z.; Li, Y. Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Sci. China Chem. 2020, 63, 957–965.

    Article  CAS  Google Scholar 

  155. Liu, L.; Chen, S.; Qu, Y.; Gao, X.; Han, L.; Lin, Z.; Yang, L.; Wang, W.; Zheng, N.; Liang, Y.; Tan, Y.; Xia, H.; He, F. Nanographeneosmapentalyne complexes as a cathode interlayer in organic solar cells enhance efficiency over 18%. Adv. Mater. 2021, 33, 2101279.

    Article  CAS  Google Scholar 

  156. Meng, H.; Liao, C.; Deng, M.; Xu, X.; Yu, L.; Peng, Q. 18.77% Efficiency organic solar cells promoted by aqueous solution processed cobalt(II) acetate hole transporting layer. Angew. Chem. Int. Ed. 2021, 133, 22728–22735.

    Article  Google Scholar 

  157. Li, Y.; Zhang, Z.; Han, X.; Li, T.; Lin, Y. Fine-tuning contact via complexation for high-performance organic solar cells. CCS Chem. 2022, 4, 1087–1097.

    Article  CAS  Google Scholar 

  158. Cai, C.; Yao, J.; Chen, L.; Yuan, Z.; Zhang, Z. G.; Hu, Y.; Zhao, X.; Zhang, Y.; Chen, Y.; Li, Y. Silicon naphthalocyanine tetraimides: cathode interlayer materials for highly efficient organic solar cells. Angew. Chem. Int. Ed. 2021, 60, 19053–19057.

    Article  CAS  Google Scholar 

  159. Liu, M.; Fan, P.; Hu, Q.; Russell, T. P.; Liu, Y. Naphthalene-diimide-based ionenes as universal interlayers for efficient organic solar cells. Angew. Chem. Int. Ed. 2020, 132, 18288–18292.

    Article  Google Scholar 

  160. Pan, F.; Bai, S.; Wei, X.; Li, Y.; Tang, D.; Chen, X.; Lv, M.; Li, Y. 3D surfactant-dispersed graphenes as cathode interfacial materials for organic solar cells. Sci. China Mater. 2021, 64, 277–287.

    Article  CAS  Google Scholar 

  161. Yao, J.; Qiu, B.; Zhang, Z. G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C.; Xiao, M.; Meng, L.; Li, Y. Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 2020, 11, 2726.

    Article  CAS  Google Scholar 

  162. Fukuda, K.; Yu, K.; Someya, T. The future of flexible organic solar cells. Adv. Energy Mater. 2020, 10, 2000765.

    Article  CAS  Google Scholar 

  163. Li, Z. Y.; Zhong, W. K.; Ying, L.; Li, N.; Liu, F.; Huang, F.; Cao, Y. Achieving efficient thick film all-polymer solar cells using a green solvent additive. Chinese J. Polym. Sci. 2020, 38, 323.

    Article  Google Scholar 

  164. Yu, R.; Yao, H.; Hong, L.; Qin, Y.; Zhu, J.; Cui, Y.; Li, S.; Hou, J. Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat. Commun. 2018, 9, 4645.

    Article  Google Scholar 

  165. Shan, T.; Zhang, Y.; Wang, Y.; Xie, Z.; Wei, Q.; Xu, J.; Zhang, M.; Wang, C.; Bao, Q.; Wang, X.; Chen, C. C.; Huang, J.; Chen, Q.; Liu, F.; Chen, L.; Zhong, H. Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction. Nat. Commun. 2020, 11, 5585.

    Article  CAS  Google Scholar 

  166. Wang, X.; Zhang, L.; Hu, L.; Xie, Z.; Mao, H.; Tan, L.; Zhang, Y.; Chen, Y. High-efficiency (16.93%) pseudo-planar heterojunction organic solar cells enabled by binary additives strategy. Adv. Funct. Mater. 2021, 31, 2102291.

    Article  CAS  Google Scholar 

  167. Yang, Y.; Feng, E.; Li, H.; Shen, Z.; Liu, W.; Guo, J.; Luo, Q.; Zhang, J.; Lu, G.; Ma, C.; Yang, J. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res. 2021, 14, 4236–4242.

    Article  CAS  Google Scholar 

  168. Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; Huang, F.; Sun, Y. A well-mixed phase formed by two compatible non-fullerene acceptors enables ternary organic solar cells with efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.

    Article  CAS  Google Scholar 

  169. Xu, X.; Li, Y.; Peng, Q. Recent advances in morphology optimizations towards highly efficient ternary organic solar cells. Nano Sel. 2020, 1, 30–58.

    Article  Google Scholar 

  170. Zhou, Z.; Xu, S.; Song, J.; Jin, Y.; Yue, Q.; Qian, Y.; Liu, F.; Zhang, F.; Zhu, X. High-efficiency small-molecule ternary solar cells with a hierarchical morphology enabled by synergizing fullerene and non-fullerene acceptors. Nat. Energy 2018, 3, 952–959.

    Article  CAS  Google Scholar 

  171. Liu, T.; Yang, T.; Ma, R.; Zhan, L.; Luo, Z.; Zhang, G.; Li, Y.; Gao, K.; Xiao, Y.; Yu, J.; Zou, X.; Sun, H.; Zhang, M.; Dela Peña, T. A.; Xing, Z.; Liu, H.; Li, X.; Li, G.; Huang, J.; Duan, C.; Wong, K. S.; Lu, X.; Guo, X.; Gao, F.; Chen, H.; Huang, F.; Li, Y.; Li, Y.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule 2021, 5, 914–930.

    Article  CAS  Google Scholar 

  172. An, Q.; Wang, J.; Ma, X.; Gao, J.; Hu, Z.; Liu, B.; Sun, H.; Guo, X.; Zhang, X.; Zhang, F. Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ. Sci. 2020, 13, 5039–5047.

    Article  CAS  Google Scholar 

  173. Wang, Y.; Duan, C.; Lv, P.; Ku, Z.; Lu, J.; Huang, F.; Cheng, Y. B. Printing strategies for scaling-up perovskite solar cells. Natl. Sci. Rev. 2021, 8, nwab075.

    Article  CAS  Google Scholar 

  174. Savagatrup, S.; Printz, A. D.; O’Connor, T. F.; Zaretski, A. V.; Rodriquez, D.; Sawyer, E. J.; Rajan, K. M.; Acosta, R. I.; Root, S. E.; Lipomi, D. J. Mechanical degradation and stability of organic solar cells: Molecular and microstructural determinants. Energy Environ. Sci. 2015, 8, 55–80.

    Article  CAS  Google Scholar 

  175. Zhou, N.; Buchholz, D. B.; Zhu, G.; Yu, X.; Lin, H.; Facchetti, A.; Marks, T. J.; Chang, R. P. H. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes. Adv. Mater. 2014, 26, 1098–1104.

    Article  CAS  Google Scholar 

  176. Dos Reis Benatto, G. A.; Roth, B.; Corazza, M.; Søndergaard, R. R.; Gevorgyan, S. A.; Jørgensen, M.; Krebs, F. C. Roll-to-roll printed silver nanowires for increased stability of flexible ITO-free organic solar cell modules. Nanoscale 2016, 8, 318–326.

    Article  CAS  Google Scholar 

  177. Konios, D.; Petridis, C.; Kakavelakis, G.; Sygletou, M.; Savva, K.; Stratakis, E.; Kymakis, E. Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices. Adv. Funct. Mater. 2015, 25, 2213–2221.

    Article  CAS  Google Scholar 

  178. Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y. R.; Kim, B. J.; Lee, K. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 2014, 26, 2268–2272.

    Article  CAS  Google Scholar 

  179. Liu, X.; Zheng, Z.; Wang, J.; Wang, Y.; Xu, B.; Zhang, S.; Hou, J. Fluidic manipulating of printable zinc oxide for flexible organic solar cells. Adv. Mater. 2022, 34, 2106453.

    Article  CAS  Google Scholar 

  180. Kaltenbrunner, M.; White, M. S.; Głowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770.

    Article  Google Scholar 

  181. Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440.

    Article  CAS  Google Scholar 

  182. Ginting, R. T.; Ovhal, M. M.; Kang, J. W. A novel design of hybrid transparent electrodes for high performance and ultra-flexible bifunctional electrochromic-supercapacitors. Nano Energy 2018, 53, 650–657.

    Article  CAS  Google Scholar 

  183. Sun, J. G.; Yang, T. N.; Wang, C. Y.; Chen, L. J. A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy 2018, 48, 383–390.

    Article  CAS  Google Scholar 

  184. Kim, J.; Ouyang, D.; Lu, H.; Ye, F.; Guo, Y.; Zhao, N.; Choy, W. C. H. High performance flexible transparent electrode via one-step multifunctional treatment for Ag nanonetwork composites semi-embedded in low-temperature-processed substrate for highly performed organic photovoltaics. Adv. Energy Mater. 2020, 10, 2070066.

    Article  CAS  Google Scholar 

  185. Lee, H. B.; Jin, W. Y.; Ovhal, M. M.; Kumar, N.; Kang, J. W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 2019, 7, 1087–1110.

    Article  CAS  Google Scholar 

  186. Papanastasiou, D. T.; Schultheiss, A.; Muñoz-Rojas, D.; Celle, C.; Carella, A.; Simonato, J. P.; Bellet, D. Transparent heaters: a review. Adv. Funct. Mater. 2020, 30, 1910225.

    Article  CAS  Google Scholar 

  187. Demirbakan, B.; Sezgintürk, M. K. A novel electrochemical immunosensor based on disposable ITO-PET electrodes for sensitive detection of PAK 2 antigen. J. Electroanal. Chem. 2019, 848, 113304.

    Article  CAS  Google Scholar 

  188. Park, S. H.; Lee, S. M.; Ko, E. H.; Kim, T. H.; Nah, Y. C.; Lee, S. J.; Lee, J. H.; Kim, H. K. Roll-to-roll sputtered ITO/Cu/ITO multilayer electrode for flexible, transparent thin film heaters and electrochromic applications. Sci. Rep. 2016, 6, 33868.

    Article  CAS  Google Scholar 

  189. Lee, S. J.; Kim, Y.; Hwang, J. Y.; Lee, J. H.; Jung, S.; Park, H.; Cho, S.; Nahm, S.; Yang, W. S.; Kim, H.; Han, S. H. Flexible indium-tin oxide crystal on plastic substrates supported by graphene monolayer. Sci. Rep. 2017, 7, 3131.

    Article  Google Scholar 

  190. Hu, Y.; Zhang, S.; Shu, T.; Qiu, T.; Bai, F.; Ruan, W.; Xu, F. Highly efficient flexible solar cells based on a room-temperature processed inorganic perovskite. J. Mater. Chem. A 2018, 6, 20365–20373.

    Article  CAS  Google Scholar 

  191. Wu, C. C. Highly flexible touch screen panel fabricated with silver-inserted transparent ITO triple-layer structures. RSC Adv. 2018, 8, 11862–11870.

    Article  CAS  Google Scholar 

  192. Kim, J. H.; Seok, H. J.; Seo, H. J.; Seong, T. Y.; Heo, J. H.; Lim, S. H.; Ahn, K. J.; Kim, H. K. Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 2018, 10, 20587–20598.

    Article  CAS  Google Scholar 

  193. Shen, L.; Du, L.; Tan, S.; Zang, Z.; Zhao, C.; Mai, W. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chem. Commun. 2016, 52, 6296–6299.

    Article  CAS  Google Scholar 

  194. Lin, Y.; Yuan, W.; Ding, C.; Chen, S.; Su, W.; Hu, H.; Cui, Z.; Li, F. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

    Article  CAS  Google Scholar 

  195. Patil, J. J.; Chae, W. H.; Trebach, A.; Carter, K. J.; Lee, E.; Sannicolo, T.; Grossman, J. C. Failing forward: stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 2021, 33, 2004356.

    Article  CAS  Google Scholar 

  196. Meng, L.; Zhang, M.; Deng, H.; Xu, B.; Wang, H.; Wang, Y.; Jiang, L.; Liu, H. Direct-writing large-area cross-aligned Ag nanowires network: toward high-performance transparent quantum dot light-emitting diodes. CCS Chem. 2021, 3, 2194–2202.

    Article  CAS  Google Scholar 

  197. Hwang, Y.; Hwang, Y. H.; Choi, K. W.; Lee, S.; Kim, S.; Park, S. J.; Ju, B. K. Highly stabilized flexible transparent capacitive photodetector based on silver nanowire/graphene hybrid electrodes. Sci. Rep. 2021, 11, 10499.

    Article  CAS  Google Scholar 

  198. Abbas, S.; Kumar, M.; Kim, D. W.; Kim, J. Translucent photodetector with blended nanowires-metal oxide transparent selective electrode utilizing photovoltaic and pyrophototronic coupling effect. Small 2019, 15, 1804346.

    Article  Google Scholar 

  199. Hu, H.; Wang, S.; Wang, S.; Liu, G.; Cao, T.; Long, Y. Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 2019, 29, 1902922.

    Article  Google Scholar 

  200. Leem, D. S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D. C.; De Mello, J. C. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 2011, 23, 4371–4375.

    Article  CAS  Google Scholar 

  201. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692.

    Article  CAS  Google Scholar 

  202. Seo, J. H.; Hwang, I.; Um, H. D.; Lee, S.; Lee, K.; Park, J.; Shin, H.; Kwon, T. H.; Kang, S. J.; Seo, K. Cold isostatic-pressured silver nanowire electrodes for flexible organic solar cells via room-temperature processes. Adv. Mater. 2017, 29, 1701479.

    Article  Google Scholar 

  203. Meng, X.; Hu, X.; Yang, X.; Yin, J.; Wang, Q.; Huang, L.; Yu, Z.; Hu, T.; Tan, L.; Zhou, W.; Chen, Y. Roll-to-roll printing of meter-scale composite transparent electrodes with optimized mechanical and optical properties for photoelectronics. ACS Appl. Mater. Interfaces 2018, 10, 8917–8925.

    Article  CAS  Google Scholar 

  204. Tan, L.; Wang, Y.; Zhang, J.; Xiao, S.; Zhou, H.; Li, Y.; Chen, Y.; Li, Y. Highly efficient flexible polymer solar cells with robust mechanical stability. Adv. Sci. 2019, 6, 1801180.

    Article  Google Scholar 

  205. Alshammari, A. S. Improved electrical stability of silver NWs based hybrid transparent electrode interconnected with polymer functionalized CNTs. Mater. Res. Bull. 2019, 111, 245–250.

    Article  CAS  Google Scholar 

  206. Zhang, C. (John); Higgins, T. M.; Park, S. H.; O’Brien, S. E.; Long, D.; Coleman, J. N.; Nicolosi, V. Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films. Nano Energy 2016, 28, 495–505.

    Article  CAS  Google Scholar 

  207. Zhao, Y.; Zhang, S.; Yu, T.; Zhang, Y.; Ye, G.; Cui, H.; He, C.; Jiang, W.; Zhai, Y.; Lu, C.; Gu, X.; Liu, N. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 2021, 12, 4880.

    Article  CAS  Google Scholar 

  208. Wu, W. T.; Jiang, H.; Qi, Y. T.; Fan, W. T.; Yan, J.; Liu, Y. L.; Huang, W. H. Large-scale synthesis of functionalized nanowires to construct nanoelectrodes for intracellular sensing. Angew. Chem. Int. Ed. 2021, 60, 19337–19343.

    Article  CAS  Google Scholar 

  209. Cui, Y.; Zhang, F.; Chen, G.; Yao, L.; Zhang, N.; Liu, Z.; Li, Q.; Zhang, F.; Cui, Z.; Zhang, K.; Li, P.; Cheng, Y.; Zhang, S.; Chen, X. A stretchable and transparent electrode based on pegylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Adv. Mater. 2021, 33, 2100221.

    Article  CAS  Google Scholar 

  210. Li, Q.; Chen, G.; Cui, Y.; Ji, S.; Liu, Z.; Wan, C.; Liu, Y.; Lu, Y.; Wang, C.; Zhang, N.; Cheng, Y.; Zhang, K. Q.; Chen, X. Highly thermalwet comfortable and conformal silk-based electrodes for onskin sensors with sweat tolerance. ACS Nano 2021, 15, 9955–9966.

    Article  Google Scholar 

  211. Liu, J.; Qu, S.; Suo, Z.; Yang, W. Functional hydrogel coatings. Nat. Sci. Rev. 2021, 8, nwaa254.

    Article  CAS  Google Scholar 

  212. Huang, J.; Ren, Z.; Zhang, Y.; Liu, K.; Zhang, H.; Tang, H.; Yan, C.; Zheng, Z.; Li, G. Stretchable ITO-free organic solar cells with intrinsic anti-reflection substrate for high-efficiency outdoor and indoor energy harvesting. Adv. Funct. Mater. 2021, 31, 2010172.

    Article  CAS  Google Scholar 

  213. Zhang, F.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganäs, O. Polymer photovoltaic cells with conducting polymer anodes. Adv. Mater. 2002, 14, 662–665.

    Article  Google Scholar 

  214. Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421–428.

    Article  CAS  Google Scholar 

  215. Song, W.; Fan, X.; Xu, B.; Yan, F.; Cui, H.; Wei, Q.; Peng, R.; Hong, L.; Huang, J.; Ge, Z. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv. Mater. 2018, 30, 1800075.

    Article  Google Scholar 

  216. Hofmann, A. I.; Smaal, W. T. T.; Mumtaz, M.; Katsigiannopoulos, D.; Brochon, C.; Schütze, F.; Hild, O. R.; Cloutet, E.; Hadziioannou, G. An alternative anionic polyelectrolyte for aqueous pedot dispersions: toward printable transparent electrodes. Angew. Chem. Int. Ed. 2015, 127, 8626–8630.

    Article  Google Scholar 

  217. Lee, C.; Kang, D. J.; Kang, H.; Kim, T.; Park, J.; Lee, J.; Yoo, S.; Kim, B. J. Simultaneously enhancing light extraction and device stability of organic light-emitting diodes using a corrugated polymer nanosphere templated PEDOT:PSS layer. Adv. Energy Mater. 2014, 4, 1301345.

    Article  Google Scholar 

  218. Xing, W.; Chen, Y.; Wu, X.; Xu, X.; Ye, P.; Zhu, T.; Guo, Q.; Yang, L.; Li, W.; Huang, H. PEDOT:PSS-assisted exfoliation and functionalization of 2D nanosheets for high-performance organic solar cells. Adv. Funct. Mater. 2017, 27, 1701622.

    Article  Google Scholar 

  219. Fan, X. Doping and design of flexible transparent electrodes for high-performance flexible organic solar cells: recent advances and perspectives. Adv. Funct. Mater. 2021, 31, 2009399.

    Article  CAS  Google Scholar 

  220. Dauzon, E.; Lin, Y.; Faber, H.; Yengel, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T. D. Stretchable and transparent conductive PEDOT:PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv. Funct. Mater. 2020, 30, 2001251.

    Article  CAS  Google Scholar 

  221. Lee, J.; Llerena Zambrano, B.; Woo, J.; Yoon, K.; Lee, T. Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: materials, fabrications, and applications. Adv. Mater. 2020, 32, 1902532.

    Article  CAS  Google Scholar 

  222. Xiong, X.; Xue, X.; Zhang, M.; Hao, T.; Han, Z.; Sun, Y.; Zhang, Y.; Liu, F.; Pei, S.; Zhu, L. Melamine-doped cathode interlayer enables high-efficiency organic solar cells. ACS Energy Lett. 2021, 6, 3582–3589.

    Article  CAS  Google Scholar 

  223. Bi, S.; Leng, X.; Li, Y.; Zheng, Z.; Zhang, X.; Zhang, Y.; Zhou, H. Interfacial modification in organic and perovskite solar cells. Adv. Mater. 2019, 31, 1805708.

    Article  CAS  Google Scholar 

  224. Xu, B.; Hou, J. Solution-processable conjugated polymers as anode interfacial layer materials for organic solar cells. Adv. Energy Mater. 2018, 8, 1800022.

    Article  Google Scholar 

  225. Liu, G.; Xia, R.; Huang, Q.; Zhang, K.; Hu, Z.; Jia, T.; Liu, X.; Yip, H. L.; Huang, F. Tandem organic solar cells with 18.7% efficiency enabled by suppressing the charge recombination in front sub-cell. Adv. Funct. Mater. 2021, 31, 2103283.

    Article  CAS  Google Scholar 

  226. Chen, L.; Chen, Q.; Wang, C.; Li, Y. Interfacial dipole in organic and perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 18281–18292.

    Article  CAS  Google Scholar 

  227. Tavakoli, M. M.; Tavakoli, R.; Yadav, P.; Kong, J. A graphene/ZnO electron transfer layer together with perovskite passivation enables highly efficient and stable perovskite solar cells. J. Mater. Chem. A 2019, 7, 679–686.

    Article  CAS  Google Scholar 

  228. Kim, S.; Kim, C. H.; Lee, S. K.; Jeong, J. H.; Lee, J.; Jin, S. H.; Shin, W. S.; Song, C. E.; Choi, J. H.; Jeong, J. R. Highly efficient uniform ZnO nanostructures for an electron transport layer of inverted organic solar cells. Chem. Commun. 2013, 49, 6033–6035.

    Article  CAS  Google Scholar 

  229. Kadam, K. D.; Kim, H.; Rehman, S.; Patil, H.; Aziz, J.; Dongale, T. D.; Khan, M. F.; Kim, D. K. Optimization of ZnO:PEIE as an electron transport layer for flexible organic solar cells. Energy and Fuels 2021, 35, 12416–12424.

    Article  CAS  Google Scholar 

  230. Zhang, P.; Wu, J.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Ji, L.; Liu, C.; Ahmad, W.; Chen, Z. D.; Li, S. Perovskite solar cells with ZnO electron-transporting materials. Adv. Mater. 2018, 30, 1703737.

    Article  Google Scholar 

  231. Huang, J.; Wang, H.; Yan, K.; Zhang, X.; Chen, H.; Li, C. Z.; Yu, J. Highly efficient organic solar cells consisting of double bulk heterojunction layers. Adv. Mater. 2017, 29, 1606729.

    Article  Google Scholar 

  232. Huang, J.; Zhang, X.; Zheng, D.; Yan, K.; Li, C. Z.; Yu, J. Boosting organic photovoltaic performance over 11% efficiency with photoconductive fullerene interfacial modifier. Sol. RRL 2017, 1, 1600008.

    Article  Google Scholar 

  233. Wan, J.; Fan, X.; Huang, H.; Wang, J.; Zhang, Z.; Fang, J.; Yan, F. Metal oxide-free flexible organic solar cells with 0.1 M perchloric acid sprayed polymeric anodes. J. Mater. Chem. A 2020, 8, 21007–21015.

    Article  CAS  Google Scholar 

  234. Upama, M. B.; Mahmud, M. A.; Conibeer, G.; Uddin, A. Trendsetters in high-efficiency organic solar cells: toward 20% power conversion efficiency. Sol. RRL 2020, 4, 1900342.

    Article  CAS  Google Scholar 

  235. Xiao, J.; Jia, X.; Duan, C.; Huang, F.; Yip, H. L.; Cao, Y. Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent. Adv. Mater. 2021, 33, 2008158.

    Article  CAS  Google Scholar 

  236. Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Funct. Mater. 2006, 16, 1112–1116.

    Article  CAS  Google Scholar 

  237. Li, J.; Bai, Y.; Yang, B.; Zhang, J.; Chen, X.; Hayat, T.; Alsaedi, A.; Yang, Y.; Hou, J.; Tan, Z. Multifunctional bipyramid-Au@ZnO core-shell nanoparticles as a cathode buffer layer for efficient non-fullerene inverted polymer solar cells with improved near-infrared photoresponse. J. Mater. Chem. A 2019, 7, 2667–2676.

    Article  CAS  Google Scholar 

  238. Zheng, Z.; Zhang, S.; Wang, J.; Zhang, J.; Zhang, D.; Zhang, Y.; Wei, Z.; Tang, Z.; Hou, J.; Zhou, H. Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. J. Mater. Chem. A 2019, 7, 3570–3576.

    Article  CAS  Google Scholar 

  239. Xia, Y.; Wang, C.; Dong, B.; Wang, G.; Chen, Y.; Mackenzie, R. C. I.; Dong, W.; Ruan, S.; Liu, Y.; Wen, S. Molecular doping inhibits charge trapping in low-temperature-processed ZnO toward flexible organic solar cells. ACS Appl. Mater. Interfaces 2021, 13, 14423–14432.

    Article  CAS  Google Scholar 

  240. Song, Y.; Yin, F.; Zhang, C.; Guo, W.; Han, L.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

    Article  Google Scholar 

  241. Nian, L.; Zhang, W.; Zhu, N.; Liu, L.; Xie, Z.; Wu, H.; Würthner, F.; Ma, Y. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 2015, 137, 6995–6998.

    Article  CAS  Google Scholar 

  242. Bao, Q.; Liu, X.; Xia, Y.; Gao, F.; Kauffmann, L. D.; Margeat, O.; Ackermann, J.; Fahlman, M. Effects of ultraviolet soaking on surface electronic structures of solution processed ZnO nanoparticle films in polymer solar cells. J. Mater. Chem. A 2014, 2, 17676–17682.

    Article  CAS  Google Scholar 

  243. Wang, J.; Zhang, X.; Yang, Q.; Yan, C.; Fu, Y.; Zhang, B.; Xie, Z. Efficient polymer solar cells employing pure ZnO cathode interlayers without thickness-dependent and light-soaking effect and negligible electrode selection. RSC Adv. 2016, 6, 25744–25750.

    Article  CAS  Google Scholar 

  244. Wei, J.; Ji, G.; Zhang, C.; Yan, L.; Luo, Q.; Wang, C.; Chen, Q.; Yang, J.; Chen, L.; Ma, C. Q. Silane-capped ZnO nanoparticles for use as the electron transport layer in inverted organic solar cells. ACS Nano 2018, 12, 5518–5529.

    Article  CAS  Google Scholar 

  245. Li, Y.; He, C.; Zuo, L.; Zhao, F.; Zhan, L.; Li, X.; Xia, R.; Yip, H. L.; Li, C. Z.; Liu, X.; Chen, H. High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity. Adv. Energy Mater. 2021, 11, 2003408.

    Article  CAS  Google Scholar 

  246. Tan, Z.; Li, L.; Wang, F.; Xu, Q.; Li, S.; Sun, G.; Tu, X.; Hou, X.; Hou, J.; Li, Y. Solution-processed rhenium oxide: a versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest. Adv. Energy Mater. 2014, 4, 1300884.

    Article  Google Scholar 

  247. Stubhan, T.; Li, N.; Luechinger, N. A.; Halim, S. C.; Matt, G. J.; Brabec, C. J. High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer. Adv. Energy Mater. 2012, 2, 1433–1438.

    Article  CAS  Google Scholar 

  248. Li, M.; Zhang, W.; Wang, H.; Chen, L.; Zheng, C.; Chen, R. Effect of organic cathode interfacial layers on efficiency and stability improvement of polymer solar cells. RSC Adv. 2017, 7, 31158–31163.

    Article  CAS  Google Scholar 

  249. Liu, P.; Gao, Z.; Xu, L.; Shi, X.; Fu, X.; Li, K.; Zhang, B.; Sun, X.; Peng, H. Polymer solar cell textiles with interlaced cathode and anode fibers. J. Mater. Chem. A 2018, 6, 19947–19953.

    Article  CAS  Google Scholar 

  250. Xu, H.; Zou, H.; Zhou, D.; Zeng, G.; Chen, L.; Liao, X.; Chen, Y. Printable hole transport layer for 1.0 cm2 organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 52028–52037.

    Article  CAS  Google Scholar 

  251. Tran, H. N.; Dao, D. Q.; Yoon, Y. J.; Shin, Y. S.; Choi, J. S.; Kim, J. Y.; Cho, S. Inverted polymer solar cells with annealing-free solution-processable NiO. Small 2021, 17, 2101729.

    Article  CAS  Google Scholar 

  252. Tran, H. N.; Park, S.; Wibowo, F. T. A.; Krishna, N. V.; Kang, J. H.; Seo, J. H.; Nguyen-Phu, H.; Jang, S. Y.; Cho, S. 17% Non-fullerene organic solar cells with annealing-free aqueous MoOx. Adv. Sci. 2020, 7, 2002395.

    Article  CAS  Google Scholar 

  253. Kang, Q.; Zheng, Z.; Zu, Y.; Liao, Q.; Bi, P.; Zhang, S.; Yang, Y.; Xu, B.; Hou, J. N-doped inorganic molecular clusters as a new type of hole transport material for efficient organic solar cells. Joule 2021, 5, 646–658.

    Article  CAS  Google Scholar 

  254. Xu, H.; Xu, H.; Yuan, F.; Zhou, D.; Liao, X.; Chen, L.; Chen, Y.; Chen, Y. Hole transport layers for organic solar cells: recent progress and prospects. J. Mater. Chem. A 2020, 8, 11478–11492.

    Article  CAS  Google Scholar 

  255. Xue, R.; Zhang, M.; Luo, D.; Chen, W.; Zhu, R.; Yang, Y. M.; Li, Y.; Li, Y. Dopant-free hole transporting materials with supramolecular interactions and reverse diffusion for efficient and modular p-i-n perovskite solar cells. Sci. China Chem. 2020, 63, 987–996.

    Article  CAS  Google Scholar 

  256. Wang, Y.; Luo, Q.; Wu, N.; Wang, Q.; Zhu, H.; Chen, L.; Li, Y. Q.; Luo, L.; Ma, C. Q. Solution-processed MoO3:PEDOT:PSS hybrid hole transporting layer for inverted polymer solar cells. ACS Appl. Mater. Interfaces 2015, 7, 7170–7179.

    Article  CAS  Google Scholar 

  257. Cheng, J.; Zhang, H.; Zhao, Y.; Mao, J.; Li, C.; Zhang, S.; Wong, K. S.; Hou, J.; Choy, W. C. H. Self-assembled quasi-3D nanocomposite: a novel p-type hole transport layer for high performance inverted organic solar cells. Adv. Funct. Mater. 2018, 28, 1–10.

    Article  CAS  Google Scholar 

  258. Kim, B. J.; Kim, M. cheol; Lee, D. G.; Lee, G.; Bang, G. J.; Jeon, J. B.; Choi, M.; Jung, H. S. Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800993.

    Article  Google Scholar 

  259. Yang, L.; Dall’Agnese, Y.; Hantanasirisakul, K.; Shuck, C. E.; Maleski, K.; Alhabeb, M.; Chen, G.; Gao, Y.; Sanehira, Y.; Jena, A. K.; Shen, L.; Dall’Agnese, C.; Wang, X. F.; Gogotsi, Y.; Miyasaka, T. SnO2-Ti3C2 MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 2019, 7, 5635–5642.

    Article  CAS  Google Scholar 

  260. Cao, H.; Qin, D.; Wang, J.; Li, T.; Zhu, J.; Jiang, H.; Zhang, M.; Liu, K.; Tang, Z.; Zhan, X. New roles of fused-ring electron acceptors in organic solar cells. J. Mater. Chem. A 2019, 7, 4766–4770.

    Article  CAS  Google Scholar 

  261. Gao, J.; An, Q.; Zhang, M.; Miao, J.; Ma, X.; Hu, Z.; Wang, J.; Zhang, F. One key issue in characterization of organic solar cells with solution processed interfacial layers. Phys. Chem. Chem. Phys. 2019, 21, 5790–5795.

    Article  CAS  Google Scholar 

  262. Zhou, H.; Zhang, Y.; Mai, C. K.; Seifter, J.; Nguyen, T. Q.; Bazan, G. C.; Heeger, A. J. Solution-processed pH-neutral conjugated polyelectrolyte improves interfacial contact in organic solar cells. ACS Nano 2015, 9, 371–377.

    Article  CAS  Google Scholar 

  263. Chen, S.; Liu, L.; Gao, X.; Hua, Y.; Peng, L.; Zhang, Y.; Yang, L.; Tan, Y.; He, F.; Xia, H. Addition of alkynes and osmium carbynes towards functionalized dπ-pπ conjugated systems. Nat. Commun. 2020, 11, 4651.

    Article  CAS  Google Scholar 

  264. Yin, Y.; Sibley, A.; Quinton, J. S.; Lewis, D. A.; Andersson, G. G. Dipole formation at the MoO3/conjugated polymer interface. Adv. Funct. Mater. 2018, 28, 1802825.

    Article  Google Scholar 

  265. Meng, L.; Sun, C.; Wang, R.; Huang, W.; Zhao, Z.; Sun, P.; Huang, T.; Xue, J.; Lee, J. W.; Zhu, C.; Huang, Y.; Li, Y.; Yang, Y. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 2018, 140, 17255–17262.

    Article  CAS  Google Scholar 

  266. Sun, C.; Xia, R.; Shi, H.; Yao, H.; Liu, X.; Hou, J.; Huang, F.; Yip, H. L.; Cao, Y. Heat-insulating multifunctional semitransparent polymer solar cells. Joule 2018, 2, 1816–1826.

    Article  CAS  Google Scholar 

  267. Min, J.; Bronnbauer, C.; Zhang, Z. G.; Cui, C.; Luponosov, Y. N.; Ata, I.; Schweizer, P.; Przybilla, T.; Guo, F.; Ameri, T.; Forberich, K.; Spiecker, E.; Bäuerle, P.; Ponomarenko, S. A.; Li, Y.; Brabec, C. J. Fully solution-processed small molecule semitransparent solar cells: optimization of transparent cathode architecture and four absorbing layers. Adv. Funct. Mater. 2016, 26, 4543–4550.

    Article  CAS  Google Scholar 

  268. Zhang, L.; Zhou, X.; Zhong, X.; Cheng, C.; Tian, Y.; Xu, B. Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells. Nano Energy 2019, 57, 248–255.

    Article  CAS  Google Scholar 

  269. Hou, Y.; Chen, W.; Baran, D.; Stubhan, T.; Luechinger, N. A.; Hartmeier, B.; Richter, M.; Min, J.; Chen, S.; Quiroz, C. O. R.; Li, N.; Zhang, H.; Heumueller, T.; Matt, G. J.; Osvet, A.; Forberich, K.; Zhang, Z. G.; Li, Y.; Winter, B.; Schweizer, P.; Spiecker, E.; Brabec, C. J. Overcoming the interface losses in planar heterojunction perovskite-based solar cells. Adv. Mater. 2016, 28, 5112–5120.

    Article  CAS  Google Scholar 

  270. Seo, J.; Nam, S.; Kim, H.; Bradley, D. D. C.; Kim, Y. Nano-crater morphology in hybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability. Nanoscale Horizons 2019, 4, 472–479.

    Article  Google Scholar 

  271. He, Z.; Zhang, C.; Xu, X.; Zhang, L.; Huang, L.; Chen, J.; Wu, H.; Cao, Y. Largely enhanced efficiency with a PFN/Al bilayer cathode in high efficiency bulk heterojunction photovoltaic cells with a low bandgap polycarbazole donor. Adv. Mater. 2011, 23, 3086–3089.

    Article  CAS  Google Scholar 

  272. Yang, T.; Wang, M.; Duan, C.; Hu, X.; Huang, L.; Peng, J.; Huang, F.; Gong, X. Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy Environ. Sci. 2012, 5, 8208–8214.

    Article  CAS  Google Scholar 

  273. Zhang, Z. G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy Environ. Sci. 2014, 7, 1966–1973.

    Article  CAS  Google Scholar 

  274. Lei, T.; Peng, R.; Huang, L.; Song, W.; Yan, T.; Zhu, L.; Ge, Z. 13. 5% Flexible organic solar cells achieved by robust composite ITO/PEDOT:PSS electrodes. Mater. Today Energy 2019, 14, 100334.

    Article  Google Scholar 

  275. Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819–35826.

    Article  CAS  Google Scholar 

  276. Yang, C.; Liu, D.; Chen, Y.; Chen, C.; Wang, J.; Fan, Y.; Huang, S.; Lei, W. Three-dimensional functionalized boron nitride nanosheets/ZnO superstructures for CO2 capture. ACS Appl. Mater. Interfaces 2019, 11, 10276–10282.

    Article  CAS  Google Scholar 

  277. Zhang, Z.; Zhang, Z.; Yu, Y.; Zhao, B.; Li, S.; Zhang, J.; Tan, S. Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells. J. Energy Chem. 2020, 47, 196–202.

    Article  Google Scholar 

  278. Zhou, Z.; Liu, W.; Zhou, G.; Zhang, M.; Qian, D.; Zhang, J.; Chen, S.; Xu, S.; Yang, C.; Gao, F.; Zhu, H.; Liu, F.; Zhu, X. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 2020, 32, 1906324.

    Article  CAS  Google Scholar 

  279. An, Q.; Ma, X.; Gao, J.; Zhang, F. Solvent additive-free ternary polymer solar cells with 16.27% efficiency. Sci. Bull. 2019, 64, 504–506.

    Article  CAS  Google Scholar 

  280. Li, Q.; Sun, Y.; Yang, C.; Liu, K.; Islam, M. R.; Li, L.; Wang, Z.; Qu, S. Optimizing the component ratio of PEDOT:PSS by water rinse for high efficiency organic solar cells over 16.7%. Sci. Bull. 2020, 65, 747–752.

    Article  CAS  Google Scholar 

  281. Qin, Y.; Chang, Y.; Zhu, X.; Gu, X.; Guo, L.; Zhang, Y.; Wang, Q.; Zhang, J.; Zhang, X.; Liu, X.; Lu, K.; Zhou, E.; Wei, Z.; Sun, X. 18.4% Efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today 2021, 41, 101289.

    Article  CAS  Google Scholar 

  282. Cameron, J.; Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horiz. 2020, 7, 1759–1772.

    Article  CAS  Google Scholar 

  283. Ding, Z.; Hao, Z.; Meng, B.; Xie, Z.; Liu, J.; Dai, L. Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy 2015, 15, 186–192.

    Article  CAS  Google Scholar 

  284. Duan, L.; Uddin, A. Progress in stability of organic solar cells. Adv. Sci. 2020, 7, 1903259.

    Article  CAS  Google Scholar 

  285. Zhou, L.; Yu, M.; Chen, X.; Nie, S.; Lai, W.; Su, W.; Cui, Z.; Huang, W. Screen-printed poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1705955.

    Article  Google Scholar 

  286. Cheng, J.; Xie, F.; Liu, Y.; Sha, W. E. I.; Li, X.; Yang, Y.; Choy, W. C. H. Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. J. Mater. Chem. A 2015, 3, 23955–23963.

    Article  CAS  Google Scholar 

  287. Mustafa, B.; Griffin, J.; Alsulami, A. S.; Lidzey, D. G.; Buckley, A. R. Solution processed nickel oxide anodes for organic photovoltaic devices. Appl. Phys. Lett. 2014, 104, 063302.

    Article  Google Scholar 

  288. Ahn, S.; Park, M. H.; Jeong, S. H.; Kim, Y. H.; Park, J.; Kim, S.; Kim, H.; Cho, H.; Wolf, C.; Pei, M.; Yang, H.; Lee, T. W. Fine control of perovskite crystallization and reducing luminescence quenching using self-doped polyaniline hole injection layer for efficient perovskite light-emitting diodes. Adv. Funct. Mater. 2019, 29, 1807535.

    Article  Google Scholar 

  289. Wang, J.; Zheng, Z.; Zhang, D.; Zhang, J.; Zhou, J.; Liu, J.; Xie, S.; Zhao, Y.; Zhang, Y.; Wei, Z.; Hou, J.; Tang, Z.; Zhou, H. Regulating bulk-heterojunction molecular orientations through surface free energy control of hole-transporting layers for highperformance organic solar cells. Adv. Mater. 2019, 31, 1806921.

    Article  Google Scholar 

  290. Zheng, Z.; Hu, Q.; Zhang, S.; Zhang, D.; Wang, J.; Xie, S.; Wang, R.; Qin, Y.; Li, W.; Hong, L.; Liang, N.; Liu, F.; Zhang, Y.; Wei, Z.; Tang, Z.; Russell, T. P.; Hou, J.; Zhou, H. A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer. Adv. Mater. 2018, 30, 1801801.

    Article  Google Scholar 

  291. Ha, S. R.; Park, S.; Oh, J. T.; Kim, D. H.; Cho, S.; Bae, S. Y.; Kang, D. W.; Kim, J. M.; Choi, H. Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for highperformance perovskite and polymer solar cells. Nanoscale 2018, 10, 13187–13193.

    Article  CAS  Google Scholar 

  292. Adilbekova, B.; Lin, Y.; Yengel, E.; Faber, H.; Harrison, G.; Firdaus, Y.; El-Labban, A.; Anjum, D. H.; Tung, V.; Anthopoulos, T. D. Liquid phase exfoliation of MoS2 and WS2 in aqueous ammonia and their application in highly efficient organic solar cells. J. Mater. Chem. C 2020, 8, 5259–5264.

    Article  CAS  Google Scholar 

  293. Zhao, F.; Zuo, L.; Li, Y.; Zhan, L.; Li, S.; Li, X.; Xia, R.; Yip, H. L.; Chen, H. High-performance upscaled indium tin oxide-free organic solar cells with visual esthetics and flexibility. Solar RRL 2021, 5, 2100339.

    Article  CAS  Google Scholar 

  294. Zheng, X.; Zuo, L.; Zhao, F.; Li, Y.; Chen, T.; Shan, Q.; Yan, K.; Pan, Y.; Xu, B.; Li, C. Z.; Shi, M.; Hou, J.; Chen, H. High-efficiency ITO-free organic photovoltaics with superior flexibility and upscalability. Adv. Mater. 2022, DOI: https://doi.org/10.1002/adma.202200044.

  295. Song, W.; Liu, Y.; Fanady, B.; Han, Y.; Xie, L.; Chen, Z.; Yu, K.; Peng, X.; Zhang, X.; Ge, Z. Ultra-flexible light-permeable organic solar cells for the herbal photosynthetic growth. Nano Energy 2021, 86, 106044.

    Article  CAS  Google Scholar 

  296. Cheng, P.; Wang, H. C.; Zhu, Y.; Zheng, R.; Li, T.; Chen, C. H.; Huang, T.; Zhao, Y.; Wang, R.; Meng, D.; Li, Y.; Zhu, C.; Wei, K. H.; Zhan, X.; Yang, Y. Transparent hole-transporting frameworks: a unique strategy to design high-performance semitransparent organic photovoltaics. Adv. Mater. 2020, 32, 2003891.

    Article  CAS  Google Scholar 

  297. Xie, R.; Brabec, C. J.; Yip, H. L.; Cao, Y. High-throughput optical screening for efficient semitransparent organic solar cells. Joule 2019, 3, 2241–2254.

    Article  Google Scholar 

  298. Liu, W.; Sun, S.; Zhou, L.; Cui, Y.; Zhang, W.; Hou, J.; Liu, F.; Xu, S.; Zhu, X. Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Edit. 2022, 61, e202116111.

    CAS  Google Scholar 

  299. Burgués-Ceballos, I.; Stella, M.; Lacharmoise, P.; Martínez-Ferrero, E. Towards industrialization of polymer solar cells: material processing for upscaling. J. Mater. Chem. A 2014, 2, 17711.

    Article  Google Scholar 

  300. Li, J.; Xia, R.; Qi, W.; Zhou, X.; Cheng, J.; Chen, Y.; Hou, G.; Ding, Y.; Li, Y.; Zhao, Y.; Zhang, X. Encapsulation of perovskite solar cells for enhanced stability: structures, materials and characterization. J. Power Sources 2021, 485, 229313.

    Article  CAS  Google Scholar 

  301. Ma, S.; Bai, Y.; Wang, H.; Zai, H.; Wu, J.; Li, L.; Xiang, S.; Liu, N.; Liu, L.; Zhu, C.; Liu, G.; Niu, X.; Chen, H.; Zhou, H.; Li, Y.; Chen, Q. 1000 h Operational lifetime perovskite solar cells by ambient melting encapsulation. Adv. Energy Mater. 2020, 10, 1902472.

    Article  CAS  Google Scholar 

  302. Zhang, J.; Zhang, W.; Cheng, H. M.; Silva, S. R. P. Critical review of recent progress of flexible perovskite solar cells. Mater. Today 2020, 39, 66–88.

    Article  Google Scholar 

  303. Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566.

    Article  CAS  Google Scholar 

  304. Matsumura, S.; Hlil, A. R.; Lepiller, C.; Gaudet, J.; Guay, D.; Shi, Z.; Holdcroft, S.; Hay, A. S. Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 7207–7224.

    Article  Google Scholar 

  305. Liu, S.; Chen, D.; Hu, X.; Xing, Z.; Wan, J.; Zhang, L.; Tan, L.; Zhou, W.; Chen, Y. Printable and large-area organic solar cells enabled by a ternary pseudo-planar heterojunction strategy. Adv. Funct. Mater. 2020, 30, 2003223.

    Article  CAS  Google Scholar 

  306. Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet printing-process and its applications. Adv. Mater. 2010, 22, 673–685.

    Article  CAS  Google Scholar 

  307. Zimmermann, B.; Schleiermacher, H. F.; Niggemann, M.; Würfel, U. ITO-free flexible inverted organic solar cell modules with high fill factor prepared by slot die coating. Sol. Energy Mater. Sol. Cells 2011, 95, 1587–1589.

    Article  CAS  Google Scholar 

  308. Chang, Y. M.; Liao, C. Y.; Lee, C. C.; Lin, S. Y.; Teng, N. W.; Huei-Shuan Tan, P. All solution and ambient processable organic photovoltaic modules fabricated by slot-die coating and achieved a certified 7.56% power conversion efficiency. Sol. Energy Mater. Sol. Cells 2019, 202, 110064.

    Article  CAS  Google Scholar 

  309. Zhong, W.; Hu, Q.; Jiang, Y.; Li, Y.; Chen, T. L.; Ying, L.; Liu, F.; Wang, C.; Liu, Y.; Huang, F.; Cao, Y.; Russell, T. P. In situ structure characterization in slot-die-printed all-polymer solar cells with efficiency over 9%. Sol. RRL 2019, 3, 1900032.

    Article  Google Scholar 

  310. Na, S. I.; Seo, Y. H.; Nah, Y. C.; Kim, S. S.; Heo, H.; Kim, J. E.; Rolston, N.; Dauskardt, R H.; Gao, M.; Lee, Y.; Vak, D. High performance roll-to-roll produced fullerene-free organic photovoltaic devices via temperature-controlled slot die coating. Adv. Funct. Mater. 2019, 29, 1805825.

    Article  Google Scholar 

  311. Wu, Q.; Guo, J.; Sun, R.; Guo, J.; Jia, S.; Li, Y.; Wang, J.; Min, J. Slotdie printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting. Nano Energy 2019, 61, 559–566.

    Article  CAS  Google Scholar 

  312. Lin, B.; Zhou, X.; Zhao, H.; Yuan, J.; Zhou, K.; Chen, K.; Wu, H.; Guo, R.; Scheel, M. A.; Chumakov, A.; Roth, S. V.; Mao, Y.; Wang, L.; Tang, Z.; Müller-Buschbaum, P.; Ma, W. Balancing the pre-aggregation and crystallization kinetics enables high efficiency slot-die coated organic solar cells with reduced non-radiative recombination losses. Energy Environ. Sci. 2020, 13, 2467–2479.

    Article  CAS  Google Scholar 

  313. Schwartz, L. W.; Moussalli, P.; Campbell, P.; Eley, R. R. Numerical modelling of liquid withdrawal from gravure cavities in coating operations. Chem. Eng. Res. Des. 1998, 76, 22–28.

    Article  CAS  Google Scholar 

  314. Yin, X.; Kumar, S. Flow visualization of the liquid emptying process in scaled-up gravure grooves and cells. Chem. Eng. Sci. 2006, 61, 1146–1156.

    Article  CAS  Google Scholar 

  315. Park, J. D.; Lim, S.; Kim, H. Patterned silver nanowires using the gravure printing process for flexible applications. Thin Solid Films 2015, 586, 70–75.

    Article  CAS  Google Scholar 

  316. Howard, I. A.; Abzieher, T.; Hossain, I. M.; Eggers, H.; Schackmar, F.; Ternes, S.; Richards, B. S.; Lemmer, U.; Paetzold, U. W. Coated and printed perovskites for photovoltaic applications. Adv. Mater. 2019, 31, 1806702.

    Article  Google Scholar 

  317. Cho, C. K.; Hwang, W. J.; Eun, K.; Choa, S. H.; Na, S. I.; Kim, H. K. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3269–3275.

    Article  CAS  Google Scholar 

  318. Xue, P.; Cheng, P.; Han, R. P. S.; Zhan, X. Printing fabrication of large-area non-fullerene organic solar cells. Mater. Horizons 2022, 9, 194–219.

    Article  CAS  Google Scholar 

  319. Kopola, P.; Aernouts, T.; Sliz, R.; Guillerez, S.; Ylikunnari, M.; Cheyns, D.; Välimäki, M.; Tuomikoski, M.; Hast, J.; Jabbour, G.; Myllylä, R.; Maaninen, A. Gravure printed flexible organic photovoltaic modules. Sol. Energy Mater. Sol. Cells 2011, 95, 1344–1347.

    Article  CAS  Google Scholar 

  320. Wang, Z.; Han, Y.; Yan, L.; Gong, C.; Kang, J.; Zhang, H.; Sun, X.; Zhang, L.; Lin, J.; Luo, Q.; Ma, C. Q. High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes. Adv. Funct. Mater. 2021, 31, 2007276.

    Article  CAS  Google Scholar 

  321. Karunakaran, S. K.; Arumugam, G. M.; Yang, W.; Ge, S.; Khan, S. N.; Lin, X.; Yang, G. Recent progress in inkjet-printed solar cells. J. Mater. Chem. A 2019, 7, 13873–13902.

    Article  CAS  Google Scholar 

  322. Wang, Q.; Xie, Y.; Soltani-Kordshuli, F.; Eslamian, M. Progress in emerging solution-processed thin film solar cells-Part I: polymer solar cells. Renew. Sustain. Energy Rev. 2016, 56, 347–361.

    Article  CAS  Google Scholar 

  323. Eom, S. H.; Park, H.; Mujawar, S. H.; Yoon, S. C.; Kim, S. S.; Na, S. I.; Kang, S. J.; Khim, D.; Kim, D. Y.; Lee, S. H. High efficiency polymer solar cells via sequential inkjet-printing of PEDOT:PSS and P3HT:PCBM inks with additives. Org. Electron. 2010, 11, 1516–1522.

    Article  CAS  Google Scholar 

  324. Eom, S. H.; Senthilarasu, S.; Uthirakumar, P.; Yoon, S. C.; Lim, J.; Lee, C.; Lim, H. S.; Lee, J.; Lee, S. H. Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org. Electron. 2009, 10, 536–542.

    Article  CAS  Google Scholar 

  325. Eggenhuisen, T. M.; Galagan, Y.; Biezemans, A. F. K. V.; Slaats, T. M. W. L.; Voorthuijzen, W. P.; Kommeren, S.; Shanmugam, S.; Teunissen, J. P.; Hadipour, A.; Verhees, W. J. H.; Veenstra, S. C.; Coenen, M. J. J.; Gilot, J.; Andriessen, R.; Groen, W. A. High efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A 2015, 3, 7255–7262.

    Article  CAS  Google Scholar 

  326. Jung, S.; Sou, A.; Banger, K.; Ko, D. H.; Chow, P. C. Y.; McNeill, C. R.; Sirringhaus, H. All-inkjet-printed, all-air-processed solar cells. Adv. Energy Mater. 2014, 4, 1400432.

    Article  Google Scholar 

  327. Hahne, P.; Hirth, E.; Reis, I. E.; Schwichtenberg, K.; Richtering, W.; Horn, F. M.; Eggenweiler, U. Progress in thick-film pad printing technique for solar cells. Sol. Energy Mater. Sol. Cells 2001, 65, 399–407.

    Article  CAS  Google Scholar 

  328. Krebs, F. C. Pad printing as a film forming technique for polymer solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 484–490.

    Article  CAS  Google Scholar 

  329. Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711–1717.

    Article  CAS  Google Scholar 

  330. Vak, D.; Kim, S. S.; Jo, J.; Oh, S. H.; Na, S. I.; Kim, J.; Kim, D. Y. Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl. Phys. Lett. 2007, 91, 081102.

    Article  Google Scholar 

  331. Susanna, G.; Salamandra, L.; Brown, T. M.; Di Carlo, A.; Brunetti, F.; Reale, A. Airbrush spray-coating of polymer bulk-heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 1775–1778.

    Article  CAS  Google Scholar 

  332. Wang, T.; Scarratt, N. W.; Yi, H.; Dunbar, A. D. F.; Pearson, A. J.; Watters, D. C.; Glen, T. S.; Brook, A. C.; Kingsley, J.; Buckley, A. R.; Skoda, M. W. A.; Donald, A. M.; Jones, R. A. L.; Iraqi, A.; Lidzey, D. G. Fabricating high performance, donor-acceptor copolymer solar cells by spray-coating in air. Adv. Energy Mater. 2013, 3, 505–512.

    Article  CAS  Google Scholar 

  333. Krebs, F. C.; Jørgensen, M.; Norrman, K.; Hagemann, O.; Alstrup, J.; Nielsen, T. D.; Fyenbo, J.; Larsen, K.; Kristensen, J. A complete process for production of flexible large area polymer solar cells entirely using screen printing-first public demonstration. Sol. Energy Mater. Sol. Cells 2009, 93, 422–441.

    Article  CAS  Google Scholar 

  334. Kim, J.; Duraisamy, N.; Lee, T. M.; Kim, I.; Choi, K. H. Screen printed silver top electrode for efficient inverted organic solar cells. Mater. Res. Bull. 2015, 70, 412–415.

    Article  CAS  Google Scholar 

  335. Krebs, F. C.; Spanggard, H.; Kjær, T.; Biancardo, M.; Alstrup, J. Large area plastic solar cell modules. Mater. Sci. Eng. B 2007, 138, 106–111.

    Article  CAS  Google Scholar 

  336. Jørgensen, M.; Hagemann, O.; Alstrup, J.; Krebs, F. C. Thermocleavable solvents for printing conjugated polymers: application in polymer solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 413–421.

    Article  Google Scholar 

  337. Kim, S. S.; Na, S. I.; Jo, J.; Tae, G.; Kim, D. Y. Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 2007, 19, 4410–4415.

    Article  CAS  Google Scholar 

  338. Mao, L.; Luo, B.; Sun, L.; Xiong, S.; Fan, J.; Qin, F.; Hu, L.; Jiang, Y.; Li, Z.; Zhou, Y. Writable and patternable organic solar cells and modules inspired by an old Chinese calligraphy tradition. Mater. Horiz. 2018, 5, 123–130.

    Article  CAS  Google Scholar 

  339. Cai, C.; Zhang, Y.; Song, R.; Peng, Z.; Xia, L.; Wu, M.; Xiong, K.; Wang, B.; Lin, Y.; Xu, X.; Liang, Q.; Wu, H.; Wang, E.; Hou, L. Polymer solar cells spray coated with non-halogenated solvents. Sol. Energy Mater. Sol. Cells 2017, 161, 52–61.

    Article  CAS  Google Scholar 

  340. Alstrup, J.; Jørgensen, M.; Medford, A. J.; Krebs, F. C. Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. ACS Appl. Mater. Interfaces 2010, 2, 2819–2827.

    Article  CAS  Google Scholar 

  341. Lilliedal, M. R.; Medford, A. J.; Madsen, M. V.; Norrman, K.; Krebs, F. C. The effect of post-processing treatments on inflection points in currentvoltage curves of roll-to-roll processed polymer photovoltaics. Sol. Energy Mater. Sol. Cells 2010, 94, 2018–2031.

    Article  CAS  Google Scholar 

  342. Krebs, F. C.; Tromholt, T.; Jørgensen, M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2010, 2, 873–886.

    Article  CAS  Google Scholar 

  343. Bundgaard, E.; Hagemann, O.; Manceau, M.; Jørgensen, M.; Krebs, F. C. Low band gap polymers for roll-to-roll coated polymer solar cells. Macromolecules 2010, 43, 8115–8120.

    Article  CAS  Google Scholar 

  344. Zhang, J.; Zhao, Y.; Fang, J.; Yuan, L.; Xia, B.; Wang, G.; Wang, Z.; Zhang, Y.; Ma, W.; Yan, W.; Su, W.; Wei, Z. Enhancing performance of large-area organic solar cells with thick film via ternary strategy. Small 2017, 13, 1700388.

    Article  Google Scholar 

  345. Liu, C.; Xiao, C.; Xie, C.; Li, W. Flexible organic solar cells: Materials, large-area fabrication techniques and potential applications. Nano Energy 2021, 89, 106399.

    Article  CAS  Google Scholar 

  346. Hu, L.; Jiang, Y.; Zhou, Y. Flexible organic solar cells. Flex. Energy Convers. Storage Devices 2018, 305–337.

  347. Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X. F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Thick film polymer solar cells based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole conjugated polymers with efficiency over 11%. Adv. Energy Mater. 2017, 7, 1700944.

    Article  Google Scholar 

  348. Schrödner, M.; Sensfuss, S.; Schache, H.; Schultheis, K.; Welzel, T.; Heinemann, K.; Milker, R.; Marten, J.; Blankenburg, L. Reel-to-reel wet coating by variation of solvents and compounds of photoactive inks for polymer solar cell production. Sol. Energy Mater. Sol. Cells 2012, 107, 283–291.

    Article  Google Scholar 

  349. Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yang, Y.; Zhu, J.; Cui, Y.; Zhao, W.; Zhang, H.; Zhang, Y.; Wei, Z.; Hou, J. Modulating molecular orientation enables efficient nonfullerene small-molecule organic solar cells. Chem. Mater. 2018, 30, 2129–2134.

    Article  CAS  Google Scholar 

  350. Servaites, J. D.; Yeganeh, S.; Marks, T. J.; Ratner, M. A. Efficiency enhancement in organic photovoltaic cells: consequences of optimizing series resistance. Adv. Funct. Mater. 2010, 20, 97–104.

    Article  CAS  Google Scholar 

  351. Lucera, L.; Kubis, P.; Fecher, F. W.; Bronnbauer, C.; Turbiez, M.; Forberich, K.; Ameri, T.; Egelhaaf, H. J.; Brabec, C. J. Guidelines for closing the efficiency gap between hero solar cells and roll-to-roll printed modules. Energy Technol. 2015, 3, 373–384.

    Article  Google Scholar 

  352. Zeng, Y.; Li, D.; Xiao, Z.; Wu, H.; Chen, Z.; Hao, T.; Xiong, S.; Ma, Z.; Zhu, H.; Ding, L.; Bao, Q. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80%. Adv. Energy Mater. 2021, 11, 2101338.

    Article  CAS  Google Scholar 

  353. Chen, Z.; Chen, X.; Jia, Z.; Zhou, G.; Xu, J.; Wu, Y.; Xia, X.; Li, X.; Zhang, X.; Deng, C.; Zhang, Y.; Lu, X.; Liu, W.; Zhang, C.; Yang, Y. (Michael); Zhu, H. Triplet exciton formation for non-radiative voltage loss in high-efficiency nonfullerene organic solar cells. Joule 2021, 5, 1832–1844.

    Article  CAS  Google Scholar 

  354. Chen, X. K.; Qian, D.; Wang, Y.; Kirchartz, T.; Tress, W.; Yao, H.; Yuan, J.; Hülsbeck, M.; Zhang, M.; Zou, Y.; Sun, Y.; Li, Y.; Hou, J.; Inganäs, O.; Coropceanu, V.; Bredas, J. L.; Gao, F. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 2021, 6, 799–806.

    Article  CAS  Google Scholar 

  355. Kubis, P.; Li, N.; Stubhan, T.; Machui, F.; Matt, G. J.; Voigt, M. M.; Brabec, C. J. Patterning of organic photovoltaic modules by ultrafast laser. Prog. Photovolt. Res. Appl. 2015, 23, 238.

    Article  CAS  Google Scholar 

  356. Kubis, P.; Winter, J.; Gavrilova, A.; Hennel, M.; Schlosser, S.; Richter, I.; Distler, A.; Heyder, M.; Kery, S.; Lenk, P.; Geiger, S.; Brabec, C. J.; Huber, H. P.; Egelhaaf, H. J. All sub-nanosecond laser monolithic interconnection of OPV modules. Prog. Photovolt. Res. Appl. 2019, 27, 479–490.

    Article  Google Scholar 

  357. Lucera, L.; Machui, F.; Kubis, P.; Schmidt, H. D.; Adams, J.; Strohm, S.; Ahmad, T.; Forberich, K.; Egelhaaf, H. J.; Bracbec, C. J. Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials. Energy Environ. Sci. 2016, 9, 89.

    Article  Google Scholar 

  358. Pettersson, L. A. A.; Roman, L. S.; Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 1999, 86, 487–496.

    Article  CAS  Google Scholar 

  359. Liu, Z.; Yang, Z.; Wu, S.; Zhu, J.; Guo, W.; Sheng, J.; Ye, J.; Cui, Y. Photoinduced field-effect passivation from negative carrier accumulation for high-efficiency silicon/organic heterojunction solar cells. ACS Nano 2017, 11, 12687–12695.

    Article  CAS  Google Scholar 

  360. Wang, P.; Li, W.; Sandberg, O. J.; Guo, C.; Sun, R.; Wang, H.; Li, D.; Zhang, H.; Cheng, S.; Liu, D.; Min, J.; Armin, A.; Wang, T. Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21%. Nano Lett. 2021, 21, 7845–7854.

    Article  CAS  Google Scholar 

  361. Hösel, M.; Søndergaard, R. R.; Jørgensen, M.; Krebs, F. C. Fast inline roll-to-roll printing for indium-tin-oxide-free polymer solar cells using automatic registration. Energy Technol. 2013, 1, 102–107.

    Article  Google Scholar 

  362. Kim, N.; Kang, H.; Lee, J. H.; Kee, S.; Lee, S. H.; Lee, K. Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv. Mater. 2015, 27, 2317–2323.

    Article  CAS  Google Scholar 

  363. Hu, X.; Meng, X.; Zhang, L.; Zhang, Y.; Cai, Z.; Huang, Z.; Su, M.; Wang, Y.; Li, M.; Li, F.; Yao, X.; Wang, F.; Ma, W.; Chen, Y.; Song, Y. A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 2019, 3, 2205–2218.

    Article  CAS  Google Scholar 

  364. MacHui, F.; Abbott, S.; Waller, D.; Koppe, M.; Brabec, C. J. Determination of solubility parameters for organic semiconductor formulations. Macromol. Chem. Phys. 2011, 212, 2159–2165.

    Article  CAS  Google Scholar 

  365. Xu, X.; Yu, T.; Bi, Z.; Ma, W.; Li, Y.; Peng, Q. Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers. Adv. Mater. 2018, 30, 1703973.

    Article  Google Scholar 

  366. Yang, W.; Wang, W.; Wang, Y.; Sun, R.; Guo, J.; Li, H.; Shi, M.; Guo, J.; Wu, Y.; Wang, T.; Lu, G.; Brabec, C J.; Li, Y.; Min, J. Balancing the efficiency, stability, and cost potential for organic solar cells via a new figure of merit. Joule 2021, 5, 1209–1230.

    Article  Google Scholar 

  367. Li, Y.; Li, T.; Wang, J.; Zhan, X.; Lin, Y. Intrinsically inert hyperbranched interlayer for enhanced stability of organic solar cells. Sci. Bull. 2022, 67, 171–177.

    Article  CAS  Google Scholar 

  368. Qin, Y.; Balar, N.; Peng, Z.; Gadisa, A.; Angunawela, I.; Bagui, A.; Kashani, S.; Hou, J.; Ade, H. The performance-stability conundrum of BTP-based organic solar cells. Joule 2021, 5, 2129–2147.

    Article  CAS  Google Scholar 

  369. Ghasemi, M.; Balar, N.; Peng, Z.; Hu, H.; Qin, Y.; Kim, T.; Rech, J. J.; Bidwell, M.; Mask, W.; McCulloch, L.; You, W.; Amassian, A.; Risko, C.; O’Connor, B. T.; Ade, H. A molecular interaction-diffusion framework for predicting organic solar cell stability. Nat. Mater. 2021, 20, 525–532.

    Article  CAS  Google Scholar 

  370. Burlingame, Q.; Huang, X.; Liu, X.; Jeong, C.; Coburn, C.; Forrest, S. R. Intrinsically stable organic solar cells under high-intensity illumination. Nature 2019, 573, 394–397.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Y. C. and X. H. thanks for the financial support from the National Natural Science Foundation of China (Nos. 22005131, 52173169, U1801256 and U20A20128). X. H. thanks for financial support from the “Double Thousand Plan” Science and Technology Innovation High-end Talent Project of Jiangxi Province (No. jxsq2019201049). X. M. thanks for the financial support from the China National Postdoctoral Program for Innovative Talents (No. BX2021117) and China Postdoctoral Science Foundation (No. 2021M700060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotian Hu or Yiwang Chen.

Additional information

Biography

Xiaotian Hu received his Ph.D. degree from Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2019. He was appointed as a full professor at Nanchang University in 2019. His research interest is mainly focused on the printing fabrication and modular design of wearable perovskite/organic solar cells. He self-designed the “roll-to-roll” printing equipment suitable for a variety of photoelectric devices, and some of them have been achieved transformation and economic benefits.

Yiwang Chen is a full professor of Chemistry at Jiangxi Normal University. He received his Ph. D. from Peking University in 1999 and conducted his postdoctoral work at Johannes Gutenberg-Universität Mainz. Currently he is serving as a director of Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education at Jiangxi Normal University and Institute of Polymers and Energy Chemistry (IPEC) at Nanchang University. His research interests include solution process and printing of polymer solar cells, solution process and printing of perovskite solar cells, wet printing of transparent electrodes, supercapacitor, electrocatalysis for zinc-air batteries and direct methanol fuel cells, and intelligent organosilicon elastomer.

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Xing, Z., Hu, X. et al. Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chin J Polym Sci 40, 1522–1566 (2022). https://doi.org/10.1007/s10118-022-2803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2803-4

Keywords

Navigation