Skip to main content
Log in

Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymer solar cells (PSCs) consisting of a polymer donor and a small molecular acceptor is a promising photovoltaic technology, whose device performance is determined by both polymer donor and small molecular acceptor. Halogen atoms such as fluorine or chlorine atoms were usually introduced onto the polymer donors to downshift the highest occupied molecular orbital (HOMO) energy levels and improve the open-circuit voltage (VOC) of the PSCs. However, the introduction of the halogen atoms especially fluorine atoms greatly complicates the polymer synthesis. Herein, we report the use of a structural simple and easily synthesized building block, 3,4-dicyanothiophene (DCT), to construct a set of halogen-free polymer donors PBCNTx (x=25, 50, 75) via ternary random copolymerization. The introduction of DCT units not only simplified the synthesis, but also downshifted the HOMO energy levels of the polymers and improved the VOC of PSCs effectively. Encouragingly, the PBCNT75 afforded a power conversion efficiency up to 15.7% with a VOC of 0.83 V, which are among the top values for halogen-free polymer donors. This work shows that the introduction of DCT units is a simple yet effective strategy to construct halogen-free and low-cost polymer donors for high-performance PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161.

    Article  CAS  Google Scholar 

  2. Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170–1174.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 2017, 139, 7148–7151.

    Article  CAS  PubMed  Google Scholar 

  4. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  5. Duan, C.; Ding, L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci. Bull. 2020, 65, 1231–1233.

    Article  CAS  Google Scholar 

  6. Yang, M.; Wei, W.; Zhou, X.; Wang, Z.; Duan, C. Non-fused ring acceptors for organic solar cells. Energy Mater. 2021, 1, 100008.

    Google Scholar 

  7. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

    Article  CAS  Google Scholar 

  8. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

    Article  CAS  Google Scholar 

  9. Zhang, G.; Zhao, J.; Chow, P. C. Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem. Rev. 2018, 118, 3447–3507.

    Article  CAS  PubMed  Google Scholar 

  10. Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R; Yip, H. L.; Cao, Y.; Chen, Y. Organic and solution-processed tandem solar cells with 17.3%. efficiency. Science 2018, 361, 1094–1098.

    Article  CAS  PubMed  Google Scholar 

  11. Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang, M.; Zhu, L.; Hao, T.; Zhou, G.; Qiu, C.; Zhao, Z.; Hartmann, N.; Xiao, B.; Zou, Y.; Feng, W.; Zhu, H.; Zhang, M.; Zhang, Y.; Li, Y.; Russell, T. P.; Liu, F. High-efficiency organic photovoltaics using eutectic acceptor fibrils to achieve current amplification. Adv. Mater. 2021, 33, 2007177.

    Article  CAS  Google Scholar 

  13. Xu, X.; Feng, K.; Lee, Y. W.; Woo, H. Y.; Zhang, G.; Peng, Q. Subtle polymer donor and molecular acceptor design enable efficient polymer solar cells with a very small energy loss. Adv. Funct. Mater. 2020, 30, 1907570.

    Article  CAS  Google Scholar 

  14. Duan, C.; Ding, L. The new era for organic solar cells: polymer donors. Sci. Bull. 2020, 65, 1422–1424.

    Article  CAS  Google Scholar 

  15. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  16. Fan, B.; Li, M.; Zhang, D.; Zhong, W.; Ying, L.; Zeng, Z.; An, K.; Huang, Z.; Shi, L.; Bazan, G. C.; Huang, F.; Cao, Y. Tailoring regioisomeric structures of π-conjugated polymers containing monofluorinated π-bridges for highly efficient polymer solar cells. ACS Energy Lett. 2020, 5, 2087–2094.

    Article  CAS  Google Scholar 

  17. Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J. Single-junction organic photovoltaic cells with approaching 18% efficiency. Adv. Mater. 2020, 32, 1908205.

    Article  CAS  Google Scholar 

  18. Zhu, C.; Meng, L.; Zhang, J.; Qin, S.; Lai, W.; Qiu, B.; Yuan, J.; Wan, Y.; Huang, W.; Li, Y. A quinoxaline-based D-A copolymer donor achieving 17.62% efficiency of organic solar cells. Adv. Mater. 2021, 33, 2100474.

    Article  CAS  Google Scholar 

  19. Zhang, T.; An, C.; Bi, P.; Lv, Q.; Qin, J.; Hong, L.; Cui, Y.; Zhang, S.; Hou, J. A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6%. efficiency in organic solar cell. Adv. Energy Mater. 2021, 11, 2101705.

    Article  CAS  Google Scholar 

  20. Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y. Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%. Adv. Mater. 2021, 33, 2105301.

    Article  CAS  Google Scholar 

  21. Zhang, B.; Yu, Y.; Zhou, J.; Wang, Z.; Tang, H.; Xie, S.; Xie, Z.; Hu, L.; Yip, H. L.; Ye, L.; Ade, H.; Liu, Z.; He, Z.; Duan, C.; Huang, F.; Cao, Y. 3,4-Dicyanothiophene—a versatile building block for efficient nonfullerene polymer solar cells. Adv. Energy Mater. 2020, 10, 1904247.

    Article  CAS  Google Scholar 

  22. Pang, S.; Wang, Z.; Yuan, X.; Pan, L.; Deng, W.; Tang, H.; Wu, H.; Chen, S.; Duan, C.; Huang, F.; Cao, Y. A facile synthesized polymer featuring B-N covalent bond and small single-triplet gap for high-performance organic solar cells. Angew. Chem. Int. Ed. 2021, 60, 8813–8817.

    Article  CAS  Google Scholar 

  23. Zhang, T.; An, C.; Cui, Y.; Zhang, J.; Bi, P.; Yang, C.; Zhang, S.; Hou, J. A universal nonhalogenated polymer donor for high-performance organic photovoltaic cells. Adv. Mater. 2022, 34, 2105803.

    Article  CAS  Google Scholar 

  24. Xiong, J.; Jin, K.; Jiang, Y.; Qin, J.; Wang, T.; Liu, J.; Liu, Q.; Peng, H.; Li, X.; Sun, A.; Meng, X.; Zhang, L.; Liu, L.; Li, W.; Fang, Z.; Jia, X.; Xiao, Z.; Feng, Y.; Zhang, X.; Sun, K.; Yang, S.; Shi, S.; Ding, L. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci. Bull. 2019, 64, 1573–1576.

    Article  CAS  Google Scholar 

  25. Qin, R.; Wang, D.; Zhou, G.; Yu, Z. P.; Li, S.; Li, Y.; Liu, Z. X.; Zhu, H.; Shi, M.; Lu, X.; Li, C. Z.; Chen, H. Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. J. Mater. Chem. A 2019, 7, 27632–27639.

    Article  CAS  Google Scholar 

  26. Zhao, J.; Li, Q.; Liu, S.; Cao, Z.; Jiao, X.; Cai, Y. P.; Huang, F. Bithieno[3,4-c]pyrrole-4,6-dione-mediated crystallinity in large-bandgap polymer donors directs charge transportation and recombination in efficient nonfullerene polymer solar cells. ACS Energy Lett. 2020, 5, 367–375.

    Article  CAS  Google Scholar 

  27. Yang, C.; Zhang, S.; Ren, J.; Gao, M.; Bi, P.; Ye, L.; Hou, J. Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy Environ. Sci. 2020, 13, 2864–2869.

    Article  CAS  Google Scholar 

  28. Yang, C.; Yu, R.; Liu, C.; Li, H.; Zhang, S.; Hou, J. Achieving over 10% efficiency in poly(3-hexylthiophene)-based organic solar cells via solid additives. ChemSusChem 2021, 14, 3607–3613.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X.; Liang, Z.; Du, S.; Tong, J.; Li, J.; Zhang, R.; Shi, X.; Yan, L.; Bao, X.; Xia, Y. Non-halogenated polymer donor-based organic solar cells with a nearly 15% efficiency enabled by a classic ternary strategy. ACS Appl. Energy Mater. 2021, 4, 1774–1783.

    Article  CAS  Google Scholar 

  30. Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; Alamoudi, M.; Laquai, F.; Brabec, C. J.; Salleo, A.; Durrant, J. R.; McCulloch, I. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 2016, 7, 11585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, X.; Zhang, G.; Yu, L.; Li, R.; Peng, Q. P3HT-Based polymer solar cells with 8.25% efficiency enabled by a matched molecular acceptor and smart green-solvent processing technology. Adv. Mater. 2019, 31, 1906045.

    Article  CAS  Google Scholar 

  32. Zhang, B.; Yu, Y.; Liu, Z.; Liu, X.; Duan, C.; Huang, F. Design and synthesis of wide-bandgap conjugated polymers based on 3,4-dicyanothiophene for efficient organic solar cells. Acta Polym. Sin. (in Chinese) 2020, 51, 620–631.

    CAS  Google Scholar 

  33. Zhang, Y.; Pan, L.; Peng, Z.; Deng, W.; Zhang, B.; Yuan, X.; Chen, Z.; Ye, L.; Wu, H.; Gao, X.; Liu, Z.; Duan, C.; Huang, F.; Cao, Y. Ternary copolymers containing 3,4-dicyanothiophene for efficient organic solar cells with reduced energy loss. J. Mater. Chem. A 2021, 9, 13522–13530.

    Article  CAS  Google Scholar 

  34. Wudarczyk, J.; Papamokos, G.; Margaritis, V.; Schollmeyer, D.; Hinkel, F.; Baumgarten, M.; Floudas, G.; Mullen, K. Hexasubstituted benzenes with ultrastrong dipole moments. Angew. Chem. Int. Ed. 2016, 55, 3220–3223.

    Article  CAS  Google Scholar 

  35. Liu, X.; Xie, B.; Duan, C.; Wang, Z.; Fan, B.; Zhang, K.; Lin, B.; Colberts, F. J. M.; Ma, W.; Janssen, R. A. J.; Huang, F.; Cao, Y. A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J. Mater. Chem. A 2018, 6, 395–403.

    Article  CAS  Google Scholar 

  36. Yuan, X.; Zhao, Y.; Zhan, T.; Oh, J.; Zhou, J.; Li, J.; Wang, X.; Wang, Z.; Pang, S.; Cai, P.; Yang, C.; He, Z.; Xie, Z.; Duan, C.; Huang, F.; Cao, Y. A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells. Energy Environ. Sci. 2021, 14, 5530–5540.

    Article  CAS  Google Scholar 

  37. Riedel, I.; Parisi, J.; Dyakonov, V.; Lutsen, L.; Vanderzande, D.; Hummelen, J. C. Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 2004, 14, 38–44.

    Article  CAS  Google Scholar 

  38. Cowan, S. R.; Roy, A.; Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 2010, 82, 245207.

    Article  CAS  Google Scholar 

  39. Mihailetchi, V. D.; Koster, L. J. A.; Hummelen, J. C.; Blom, P. W. M. Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 2004, 93, 216601.

    Article  CAS  PubMed  Google Scholar 

  40. Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 2009, 8, 904–909.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganas, O.; Gundogdu, K.; Gao, F.; Yan, H. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

    Article  CAS  Google Scholar 

  42. Qian, D.; Zheng, Z.; Yao, H.; Tress, W.; Hopper, T. R.; Chen, S.; Li, S.; Liu, J.; Chen, S.; Zhang, J.; Liu, X. K; Gao, B.; Ouyang, L.; Jin, Y.; Pozina, G.; Buyanova, I. A.; Chen, W. M; Inganas, O.; Coropceanu, V.; Bredas, J. L.; Yan, H.; Hou, J.; Zhang, F.; Bakulin, A. A.; Gao, F. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 2018, 17, 703–709.

    Article  CAS  PubMed  Google Scholar 

  43. Beiley, Z. M.; Hoke, E. T.; Noriega, R.; Dacuña, J.; Burkhard, G. F.; Bartelt, J. A.; Salleo, A.; Toney, M. F.; McGehee, M. D. Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells. Adv. Energy Mater. 2011, 1, 954–962.

    Article  CAS  Google Scholar 

  44. Heumueller, T.; Burke, T. M.; Mateker, W. R.; Sachs-Quintana, I. T.; Vandewal, K.; Brabec, C. J.; McGehee, M. D. Disorder-induced open-circuit voltage losses in organic solar cells during photoinduced burn-in. Adv. Energy Mater. 2015, 5, 1500111.

    Article  CAS  Google Scholar 

  45. Heumueller, T.; Mateker, W. R.; Distler, A.; Fritze, U. F.; Cheacharoen, R.; Nguyen, W. H.; Biele, M.; Salvador, M.; von Delius, M.; Egelhaaf, H. J.; McGehee, M. D.; Brabec, C. J. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 2016, 9, 247–256.

    Article  CAS  Google Scholar 

  46. Cha, H.; Wu, J.; Wadsworth, A.; Nagitta, J.; Limbu, S.; Pont, S.; Li, Z.; Searle, J.; Wyatt, M. F.; Baran, D.; Kim, J. S.; McCulloch, I.; Durrant, J. R. An efficient, “burn in” free organic solar cell employing a nonfullerene electron acceptor. Adv. Mater. 2017, 29, 1701156.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Ministry of Science and Technology of China (Nos. 2017YFA0206600 and 2019YFA0705900), the National Natural Science Foundation of China (Nos. 21875072, U20A6002 and 51973169), and Guangdong Innovative and Entrepreneurial Research Team Program (No. 2019ZT08L075). This study also received financial support from Science and Technology Foundation of Guangdong Province (No. 2021A0101180005), and Special Projects in Key Areas for the University of Guangdong Province (No. 2021ZDZX1009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Wen Lin, Zhi-Tian Liu or Chun-Hui Duan.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YL., Zhang, Y., Yuan, XY. et al. Halogen-free Polymer Donors Based on 3,4-Dicyanothiophene for High-performance Polymer Solar Cells. Chin J Polym Sci 40, 905–913 (2022). https://doi.org/10.1007/s10118-022-2721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2721-5

Keywords

Navigation