Skip to main content
Log in

UV-Vis-NIR Light-deformable Shape-memory Polyurethane Doped with Liquid-crystal Mixture and GO towards Biomimetic Applications

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Nature has been inspiring material researchers to fabricate biomimetic functional devices for various applications, and shape-memory polymer materials (SMPMs) have received tremendous attention since the promising intelligent materials possess more advantages over others for the fabrication of biomimetic functional devices. As is well-known, SMPMs can be stimulated by heat, electricity, magnetism, pH, solvent and light. From the viewpoint of practical applications, ultraviolet (UV)-visible (Vis)-near infrared (NIR) light-responsive SMPMs are undoubtedly more advantageous. However, up to now, UV-Vis-NIR light-deformable SMPMs by combining photothermal and photochemical effects are still rarely reported. Here we designed a UV-Vis-NIR light-deformable SMP composite film via incorporating a liquid crystal (LC) mixture and graphene oxide (GO) into a shape-memory polyurethane matrix. The elongated composite films exhibited interesting photomechanical bending deformations with different light-triggered mechanisms, (1) photochemically induced LC phase transition upon UV exposure, (2) photochemically and photothermally induced LC phase transition upon visible-light irradiation, (3) photothermally triggered LC phase transition and partial stress relaxation upon low-intensity NIR exposure. All the deformed objects could recover to their original shapes by high-intensity NIR irradiation. Moreover, the biomimetic circadian rhythms of acacia leaves and the biomimetic bending/spreading of fingers were successfully achieved, which could blaze a way in the field of biomimetic functional devices due to the excellent light-deformable and shape-memory properties of the SMP composite films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu, H.; Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 2011, 23, 2149–2180.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49–50, 79–120.

    Article  Google Scholar 

  3. Song, L.; Li, Y.; Xiong, Z.; Pan, L.; Luo, Q.; Xu, X.; Lu, S. Water-induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohyd. Polym. 2018, 179, 110–117.

    Article  CAS  Google Scholar 

  4. Zhang, Y.; Zhang, M.; Jiang, H.; Shi, J.; Li, F.; Xia, Y.; Zhang, G.; Li, H. Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect. Carbohyd. Polym. 2017, 177, 116–125.

    Article  CAS  Google Scholar 

  5. Park, J. K.; Nan, K.; Luan, H.; Zheng, N.; Zhao, S.; Zhang, H.; Cheng, X.; Wang, H.; Li, K.; Xie, T.; Huang, Y.; Zhang, Y.; Kim, S.; Rogers, J. A. Remotely triggered assembly of 3D mesostructures through shape-memory effects. Adv. Mater. 2019, 31, 1905715.

    Article  CAS  Google Scholar 

  6. Rehman, H. U.; Chen, Y.; Hedenqvist, M. S.; Li, H.; Xue, W.; Guo, Y.; Guo, Y.; Duan, H.; Liu, H. Self-healing shape memory PUPCL copolymer with high cycle life. Adv. Funct. Mater. 2017, 28, 1704109.

    Article  Google Scholar 

  7. Peng, K.; Zhao, Y.; Shahab, S.; Mirzaeifar, R. Ductile shape-memory polymer composite with enhanced shape recovery ability. ACS Appl. Mater. Interfaces 2020, 12, 58295–58300.

    Article  CAS  PubMed  Google Scholar 

  8. Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267–270.

    Article  CAS  PubMed  Google Scholar 

  9. Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric triple-shape materials. Proc. Natl. Acad. Sci. USA 2006, 103, 18043–18047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, X.; Lan, J.; Wu, P.; Zhang, J. Liquid metal based electrical driven shape memory polymers. Polymer 2021, 212, 112174.

    Article  Google Scholar 

  11. Wang, W.; Liu, D.; Liu, Y.; Leng, J.; Bhattacharyya, D. Electrical actuation properties of reduced graphene oxide paper/epoxy-based shape memory composites. Compos. Sci. Technol. 2015, 106, 20–24.

    Article  CAS  Google Scholar 

  12. Chen, Y.; Zhao, X.; Li, Y.; Jin, Z.; Yang, Y.; Yang, M.; Yin, B. Light-and magnetic-responsive synergy controlled reconfiguration of polymer nanocomposites with shape memory assisted self-healing performance for soft robotics. J. Mater. Chem. C 2021, 9, 5515–5527.

    Article  CAS  Google Scholar 

  13. Liu, J. A. C.; Evans, B. A.; Tracy, J. B. Photothermally reconfigurable shape memory magnetic cilia. Adv. Mater. Technol. 2020, 5, 2000147.

    Article  CAS  Google Scholar 

  14. Xiao, Y.; Gong, X.; Kang, Y.; Jiang, Z.; Zhang, S.; Li, B. Light-, pH- and thermal-responsive hydrogels with the triple-shape memory effect. Chem. Commun. 2016, 52, 10609–10612.

    Article  CAS  Google Scholar 

  15. Sessini, V.; Arrieta, M P.; Fernández-Torres, A.; Peponi, L. Humidity-activated shape memory effect on plasticized starch-based biomaterials. Carbohyd. Polym. 2018, 179, 93–99.

    Article  CAS  Google Scholar 

  16. Huang, Y.; Bisoyi, H. K.; Huang, S.; Wang, M.; Chen, X.; Liu, Z.; Yang, H.; Li, Q. Bioinspired synergistic photochromic luminescence and programmable liquid crystal actuators. Angew. Chem. Int. Ed. 2021, 60, 11247–11251.

    Article  CAS  Google Scholar 

  17. Zheng, Z.; Li, Y.; Bisoyi, H. K.; Wang, L.; Bunning, T. J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–356.

    Article  CAS  PubMed  Google Scholar 

  18. Li, G.; Zhang, H.; Fortin, D.; Fan, W.; Xia, H.; Zhao, Y. A composite material with room temperature shape processability and optical repair. J. Mater. Chem. C 2016, 4, 5932–5939.

    Article  CAS  Google Scholar 

  19. Yang, L.; Wang, Z.; Fei, G.; Xia, H. Polydopamine particles reinforced poly(vinyl alcohol) hydrogel with NIR light triggered shape memory and self-healing capability. Macromol. Rapid Commun. 2017, 38, 1700421.

    Article  Google Scholar 

  20. Zhang, P.; Cai, F.; Wang, W.; Wang, G.; Yu, H. Light-switchable adhesion of azobenzene-containing siloxane-based tough adhesive. ACSAppl. Polym. Mater. 2021, 3, 2325–2329.

    Article  CAS  Google Scholar 

  21. Yu, H. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J. Mater. Chem. C 2014, 2, 3047–3054.

    Article  CAS  Google Scholar 

  22. Qin, L.; Liu, X.; Yu, Y. Soft actuators of liquid crystal polymers fueled by light from ultraviolet to near infrared. Adv. Opt. Mater. 2021, 9, 2001743.

    Article  CAS  Google Scholar 

  23. Hu, J.; Li, X.; Ni, Y.; Ma, S.; Yu, H. A programmable and biomimetic photo-actuator: a composite of a photo-liquefiable azobenzene derivative and commercial plastic film. J. Mater. Chem. C 2018, 6, 10815–10821.

    Article  CAS  Google Scholar 

  24. Li, X.; Ma, S.; Hu, J.; Ni, Y.; Lin, Z.; Yu, H. Photo-activated bimorph composites of Kapton and liquid-crystalline polymer towards biomimetic circadian rhythms of Albizia julibrissin leaves. J. Mater. Chem. C 2019, 7, 622–629.

    Article  CAS  Google Scholar 

  25. Liu, X.; Wang, X. Recent progresses in side-on liquid crystalline elastomers. Acta Polymerica Sinica (in Chinese) 2017, 1549–1556.

  26. Wang, J.; Huang, S.; Zhang, Y.; Liu, J.; Yu, M.; Yu, H. Hydrogen bond enhances photomechanical swing of liquid-crystalline polymer bilayer films. ACS Appl. Mater. Interfaces 2021, 13, 6585–6596.

    Article  CAS  PubMed  Google Scholar 

  27. Pang, X.; Xu, B.; Qing, X.; Wei, J.; Yu, Y. Photo-induced bending behavior of post-crosslinked liquid crystalline polymer/polyurethane blend films. Macromol. Rapid Commun. 0018, 99, 1700237.

    Google Scholar 

  28. Fang, T.; Cao, L.; Chen, S.; Fang, J.; Zhou, J.; Fang, L.; Lu, C.; Xu, Z. Preparation and assembly of five photoresponsive polymers to achieve complex light-induced shape deformations. Mater. Design 2018, 144, 129–139.

    Article  CAS  Google Scholar 

  29. Weis, P.; Wu, S. Light-switchable azobenzene-containing macromolecules: from UV to near infrared. Macromol. Rapid Commun. 2018, 39, 1700220.

    Article  Google Scholar 

  30. Wu, S.; Butt, H. J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater. 2016, 28, 1208–1226.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, Z.; Wang, T.; Li, X.; Zhang, Y.; Yu, H. NIR-Vis-UV light-responsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 27494–27501.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, P.; Wu, B.; Huang, S.; Cai, F.; Wang, G.; Yu, H. UV-Vis-NIR light-induced bending of shape-memory polyurethane composites doped with azobenzene and upconversion nanoparticles. Polymer 2019, 178, 121644.

    Article  CAS  Google Scholar 

  33. Zhou, L.; Liu, Q.; Lv, X.; Gao, L.; Fang, S.; Yu, H. Photoinduced triple shape memory polyurethane enabled by doping with azobenzene and GO. J. Mater. Chem. C 2016, 4, 9993–9997.

    Article  CAS  Google Scholar 

  34. Kim, B. K.; Lee, S. Y. Polyurethanes having shape memory effects. Polymer 1996, 37, 5781–5793.

    Article  CAS  Google Scholar 

  35. Li, F.; Hou, J.; Zhu, W.; Zhang, X.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K. Crystallinity and morphology of segmented polyurethanes with different soft-segment length. J. Appl. Polym. Sci. 1996, 22, 631–638.

    Article  Google Scholar 

  36. Yun, X.; Tang, B.; Xiong, Z.; Wang, X. Understanding self-assembly, colloidal behavior and rheological properties of graphene derivatives for high-performance supercapacitor fabrication. Chinese J. Polym. Sci. 2020, 38, 423–434.

    Article  CAS  Google Scholar 

  37. Yu, L.; Cheng, Z.; Dong, Z.; Zhang, Y.; Yu, H. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2, 8501–8506.

    Article  CAS  Google Scholar 

  38. Qing, X.; Qin, L.; Gu, W.; Yu, Y. Deformation of cross-linked liquid crystal polymers by light-from ultraviolet to visible and infrared. Liq. Cryst. 2016, 43, 2114–2135.

    Article  CAS  Google Scholar 

  39. Ube, T.; Takado, K.; Ikeda, T. Photomobile materials with interpenetrating polymer networks composed of liquid-crystalline and amorphous polymers. J. Mater. Chem. C 2015, 3, 8006–8009.

    Article  CAS  Google Scholar 

  40. Wang, W.; Lu, H.; Liu, Y.; Leng, J. Sodium dodecyl sulfate/epoxy composite: water-induced shape memory effect and its mechanism. J. Mater. Chem. A 2014, 2, 5441–5449.

    Article  CAS  Google Scholar 

  41. Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013, 54, 2199–2221.

    Article  CAS  Google Scholar 

  42. Delaey, J.; Dubruel, P.; Vlierberghe, S. V. Shape-memory polymers for biomedical applications. Adv. Funct. Mater. 2020, 30, 1909047.

    Article  CAS  Google Scholar 

  43. Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51373025, 51773002 and 51921002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Jie Wang or Hai-Feng Yu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2657_MOESM1_ESM.pdf

UV-Vis-NIR Light-deformable Shape-memory Polyurethane Doped with Liquid-crystal Mixture and GO towards Biomimetic Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Cai, F., Wang, GJ. et al. UV-Vis-NIR Light-deformable Shape-memory Polyurethane Doped with Liquid-crystal Mixture and GO towards Biomimetic Applications. Chin J Polym Sci 40, 166–174 (2022). https://doi.org/10.1007/s10118-022-2657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2657-9

Keywords

Navigation