Skip to main content
Log in

Surface and Interface Engineering for Advanced Nanofiltration Membranes

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Nanofiltration has been attracting great attention in alleviating the global water crisis because of its high efficiency, mild operation, and strong adaptability. Over decades, it remains a challenge to break the upper limit of performance and establish the formation-structure-property relationship for nanofiltration membranes. This feature article summarizes our recent progress in the preparation of high-performance thin-film composite (TFC) nanofiltration membranes, focusing on the mussel-inspired deposition method and the optimized interfacial polymerization (IP). By accelerating the oxidation of polydopamine and equilibrating the rate of aggregation and deposition processes, the mussel-inspired deposition method realizes the rapid and uniform formation of selective coatings or nanofilms. Diverse deposition systems endow the selective layer with rich chemical structures and easy post-functionalization, highlighting its potential in water treatment. As for optimizing the conventional IP, the rapid polycondensation of amine and acid chloride groups is slowed down to enable the controllability of IP at the water-organic interface. The homogeneity and integrity of the TFC membranes are improved by constructing a uniform reaction platform and introducing a viscous medium to control the amine diffusion, which facilitates the water permeability and promotes the separation efficiency. We have proposed a series of practical strategies for improving TFC membranes and might provide more inspiration for other nanofiltration techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim, Y. J.; Goh, K.; Kurihara, M.; Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication—a review. J. Membr. Sci. 2021, 629, 119292.

    Article  CAS  Google Scholar 

  2. Liang, H. Q.; Hung, W. S.; Yu, H. H.; Hu, C. C.; Lee, K. R.; Lai, J. Y.; Xu, Z.-K. Forward osmosis membranes with unprecedented water flux. J. Membr. Sci. 2017, 529, 47–54.

    Article  CAS  Google Scholar 

  3. Chowdhury, M. R.; Steffes, J.; Huey, B. D.; McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 2018, 361, 682–686.

    Article  CAS  PubMed  Google Scholar 

  4. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

    Article  CAS  PubMed  Google Scholar 

  5. Qiu, Z. L.; Fang, L. F.; Shen, Y. J.; Yu, W. H.; Zhu, B. K.; Hélix-Nielsen, C.; Zhang, W. Ionic dendrimer based polyamide membranes for ion separation. ACS Nano 2021, 15, 7522–7535.

    Article  CAS  PubMed  Google Scholar 

  6. Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 2014, 114, 10735–10806.

    Article  CAS  PubMed  Google Scholar 

  7. Ding, Y.; Weng, L. T.; Yang, M.; Yang, Z.; Lu, X.; Huang, N.; Leng, Y. Insights into the aggregation/deposition and structure of a polydopamine film. Langmuir 2014, 30, 12258–12269.

    Article  CAS  PubMed  Google Scholar 

  8. Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration membranes review: recent advances and future prospects. Desalination 2015, 356, 226–254.

    Article  CAS  Google Scholar 

  9. Warsinger, D. M.; Chakraborty, S.; Tow, E. W.; Plumlee, M. H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A. M.; Achilli, A.; Ghassemi, A.; Padhye, L. P.; Snyder, S. A.; Curcio, S.; Vecitis, C. D.; Arafat, H. A.; Lienhard, J. H. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237.

    Article  CAS  Google Scholar 

  10. Ji, C.; Zhai, Z.; Jiang, C.; Hu, P.; Zhao, S.; Xue, S.; Yang, Z.; He, T.; Niu, Q. J. Recent advances in high-performance TFC membranes: a review of the functional interlayers. Desalination 2021, 500, 114869.

    Article  CAS  Google Scholar 

  11. Ramon, G. Z.; Wong, M. C. Y.; Hoek, E. M. V. Transport through composite membrane, part 1: Is there an optimal support membrane?. J. Membr. Sci. 2012, 415, 298–305.

    Article  Google Scholar 

  12. Gorgojo, P.; Karan, S.; Wong, H. C.; Jimenez-Solomon, M. F.; Cabral, J. T.; Livingston, A. G. Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 2014, 24, 4729–4737.

    Article  CAS  Google Scholar 

  13. You, X.; Wu, H.; Su, Y.; Yuan, J.; Zhang, R.; Yu, Q.; Wu, M.; Jiang, Z.; Cao, X. Precise nanopore tuning for a high-throughput desalination membrane via co-deposition of dopamine and multifunctional POSS. J. Mater. Chem. A 2018, 6, 13191–13202.

    Article  CAS  Google Scholar 

  14. Yang, Z.; Guo, H.; Tang, C. Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 2019, 590, 117297.

    Article  Google Scholar 

  15. Ilyas, S.; Joseph, N.; Szymczyk, A.; Volodin, A.; Nijmeijer, K.; de Vos, W. M.; Vankelecom, I. F. J. Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration. J. Membr. Sci. 2016, 514, 322–331.

    Article  CAS  Google Scholar 

  16. Lau, W. J.; Ismail, A. F.; Misdan, N.; Kassim, M. A. A recent progress in thin film composite membrane: a review. Desalination 2012, 287, 190–199.

    Article  CAS  Google Scholar 

  17. Tanardi, C. R.; Pinheiro, A. F. M.; Nijmeijer, A.; Winnubst, L. PDMS grafting of mesoporous γ-alumina membranes for nanofiltration of organic solvents. J. Membr. Sci. 2014, 469, 471–477.

    Article  CAS  Google Scholar 

  18. Raaijmakers, M. J. T.; Benes, N. E. Current trends in interfacial polymerization chemistry. Prog. Polym. Sci. 2016, 63, 86–142.

    Article  CAS  Google Scholar 

  19. Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 2017, 356, 1138–1148.

    Article  Google Scholar 

  20. Yang, H. C.; Waldman, R. Z.; Wu, M. B.; Hou, J.; Chen, L.; Darling, S. B.; Xu, Z.-K. Dopamine: just the right medicine for membranes. Adv. Funct. Mater. 2018, 28, 1705327.

    Article  Google Scholar 

  21. Seah, M. Q.; Lau, W. J.; Goh, P. S.; Tseng, H. H.; Wahab, R. A.; Ismail, A. F. Progress of interfacial polymerization techniques for polyamide thin film (nano)composite membrane fabrication: a comprehensive review. Polymers 2020, 12, 2817.

    Article  CAS  PubMed Central  Google Scholar 

  22. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang, M.; Zhang, H.; Chen, J.; Wang, T.; Liu, J.; Li, X.; Li, J.; Cao, X. A facile approach to construct hierarchical dense membranes via polydopamine for enhanced propylene/nitrogen separation. J. Membr. Sci. 2016, 499, 290–300.

    Article  CAS  Google Scholar 

  24. Zhang, C.; Yang, H. C.; Wan, L. S.; Liang, H. Q.; Li, H.; Xu, Z.-K. Polydopamine-coated porous substrates as a platform for mineralized β-FeOOH nanorods with photocatalysis under sunlight. ACS Appl. Mater. Interfaces 2015, 7, 11567–11574.

    Article  CAS  PubMed  Google Scholar 

  25. Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 2011, 23, 3066–3070.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

    Article  CAS  PubMed  Google Scholar 

  27. Ku, S. H.; Ryu, J.; Hong, S. K.; Lee, H.; Park, C. B. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 2010, 31, 2535–2541.

    Article  CAS  PubMed  Google Scholar 

  28. Li, X. L.; Zhu, L. P.; Jiang, J. H.; Yi, Z.; Zhu, B. K.; Xu, Y. Y. Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer. Chinese J. Polym. Sci. 2012, 30, 152–163.

    Article  CAS  Google Scholar 

  29. Wang, Z.; Guo, J.; Ma, J.; Shao, L. Highly regenerable alkali-resistant magnetic nanoparticles inspired by mussels for rapid selective dye removal offer high-efficiency environmental remediation. J. Mater. Chem. A 2015, 3, 19960–19968.

    Article  CAS  Google Scholar 

  30. Yang, H. C.; Liao, K. J.; Huang, H.; Wu, Q. Y.; Wan, L. S.; Xu, Z.-K. Mussel-inspired modification of a polymer membrane for ultrahigh water permeability and oil-in-water emulsion separation. J. Mater. Chem. A 2014, 2, 10225–10230.

    Article  CAS  Google Scholar 

  31. Bozzi, Y.; Borrelli, E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it. Trends Neurosci. 2006, 29, 167–174.

    Article  CAS  PubMed  Google Scholar 

  32. Xi, Z. Y.; Xu, Y. Y.; Zhu, L. P.; Wang, Y.; Zhu, B. K. A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J. Membr. Sci. 2009, 327, 244–253.

    Article  CAS  Google Scholar 

  33. Zhang, R.; Su, Y.; Zhao, X.; Li, Y.; Zhao, J.; Jiang, Z. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly(ethylene imine). J. Membr. Sci. 2014, 470, 9–17.

    Article  CAS  Google Scholar 

  34. Lv, Y.; Yang, H. C.; Liang, H. Q.; Wan, L. S.; Xu, Z.-K. Novel nanofiltration membrane with ultrathin zirconia film as selective layer. J. Membr. Sci. 2016, 500, 265–271.

    Article  CAS  Google Scholar 

  35. Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, C.; Ou, Y.; Lei, W. X.; Wan, L. S.; Ji, J.; Xu, Z.-K. CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew. Chem. Int. Ed. 2016, 55, 3054–3057.

    Article  CAS  Google Scholar 

  37. Zhang, C.; Lv, Y.; Qiu, W. Z.; He, A.; Xu, Z.-K. Polydopamine coatings with nanopores for versatile molecular separation. ACS Appl. Mater. Interfaces 2017, 9, 14437–14444.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Z.; Jiang, X.; Cheng, X.; Lau, C. H.; Shao, L. Mussel-inspired hybrid coatings that transform membrane hydrophobicity into high hydrophilicity and underwater superoleophobicity for oil-in-water emulsion separation. ACS Appl. Mater. Interfaces 2015, 7, 9534–9545.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Z. X.; Lau, C. H.; Zhang, N. Q.; Bai, Y. P.; Shao, L. Mussel-inspired tailoring of membrane wettability for harsh water treatment. J. Mater. Chem. A 2015, 3, 2650–2657.

    Article  CAS  Google Scholar 

  40. Ren, P. F.; Yang, H. C.; Jin, Y. N.; Liang, H. Q.; Wan, L. S.; Xu, Z.-K. Underwater superoleophobic meshes fabricated by poly(sulfobetaine)/polydopamine co-deposition. RSC Adv. 2015, 5, 47592–47598.

    Article  CAS  Google Scholar 

  41. Zhou, R.; Ren, P. F.; Yang, H. C.; Xu, Z.-K. Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. J. Membr. Sci. 2014, 466, 18–25.

    Article  CAS  Google Scholar 

  42. Lv, Y.; Yang, H. C.; Liang, H. Q.; Wan, L. S.; Xu, Z.-K. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. J. Membr. Sci. 2015, 476, 50–58.

    Article  CAS  Google Scholar 

  43. Gin, D. L.; Noble, R. D. Designing the next generation of chemical separation membranes. Science 2011, 332, 674–676.

    Article  CAS  PubMed  Google Scholar 

  44. Bowen, W. R.; Welfoot, J. S. Modelling the performance of membrane nanofiltration-critical assessment and model development. Chem. Eng. Sci. 2002, 57, 1121–1137.

    Article  CAS  Google Scholar 

  45. da Silva Burgal, J.; Peeva, L. G.; Kumbharkar, S.; Livingston, A. Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes. J. Membr. Sci. 2015, 479, 105–116.

    Article  CAS  Google Scholar 

  46. Liu, C.; Shi, L.; Wang, R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42− in feed water. J. Membr. Sci. 2015, 486, 169–176.

    Article  CAS  Google Scholar 

  47. Guo, S.; Wan, Y.; Chen, X.; Luo, J. Loose nanofiltration membrane custom-tailored for resource recovery. Chem. Eng. J. 2021, 409, 127376.

    Article  CAS  Google Scholar 

  48. Lau, W. J.; Gray, S.; Matsuura, T.; Emadzadeh, D.; Paul Chen, J.; Ismail, A. F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 2015, 80, 306–324.

    Article  CAS  PubMed  Google Scholar 

  49. Du, Y.; Lv, Y.; Qiu, W. Z.; Wu, J.; Xu, Z.-K. Nanofiltration membranes with narrowed pore size distribution via pore wall modification. Chem. Commun. 2016, 52, 8589–8592.

    Article  CAS  Google Scholar 

  50. Du, Y.; Yang, H. C.; Xu, X. L.; Wu, J.; Xu, Z.-K. Polydopamine as a catalyst for thiol coupling. ChemCatChem 2015, 7, 3822–3825.

    Article  CAS  Google Scholar 

  51. Du, Y.; Qiu, W. Z.; Lv, Y.; Wu, J.; Xu, Z.-K. Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry. ACS Appl. Mater. Interfaces 2016, 8, 29696–29704.

    Article  CAS  PubMed  Google Scholar 

  52. Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C. Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 2010, 1, 1430.

    Article  CAS  Google Scholar 

  53. Yang, H. C.; Xu, W.; Du, Y.; Wu, J.; Xu, Z.-K. Composite freestanding films of polydopamine/polyethyleneimine grown at the air/water interface. RSC Adv. 2014, 4, 45415–45418.

    Article  CAS  Google Scholar 

  54. Yang, H. C.; Wu, M. B.; Hou, J.; Darling, S. B.; Xu, Z.-K. Nanofilms directly formed on macro-porous substrates for molecular and ionic sieving. J. Mater. Chem. A 2018, 6, 2908–2913.

    Article  CAS  Google Scholar 

  55. Wu, M. B.; Fan, X. L.; Yang, H. C.; Yang, J.; Zhu, M. M.; Ren, K. F.; Ji, J.; Xu, Z.-K. Ultrafast formation of pyrogallol/polyethyleneimine nanofilms for aqueous and organic nanofiltration. J. Membr. Sci. 2019, 570, 270–277.

    Article  Google Scholar 

  56. Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem. Int. Ed. 2013, 125, 10966–10970.

    Article  Google Scholar 

  57. Wang, H.; Wu, J.; Cai, C.; Guo, J.; Fan, H.; Zhu, C.; Dong, H.; Zhao, N.; Xu, J. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-Ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 5602–5608.

    Article  CAS  PubMed  Google Scholar 

  58. Qiu, W. Z.; Yang, H. C.; Wan, L. S.; Xu, Z.-K. Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water. J. Mater. Chem. A 2015, 3, 14438–14444.

    Article  CAS  Google Scholar 

  59. Qiu, W. Z.; Wu, G. P.; Xu, Z.-K. Robust coatings via catechol-amine codeposition: mechanism, kinetics, and application. ACS Appl. Mater. Interfaces 2018, 10, 5902–5908.

    Article  CAS  PubMed  Google Scholar 

  60. Qiu, W. Z.; Lv, Y.; Du, Y.; Yang, H. C.; Xu, Z.-K. Composite nanofiltration membranes via the co-deposition and cross-linking of catechol/polyethylenimine. RSC Adv. 2016, 6, 34096–34102.

    Article  CAS  Google Scholar 

  61. Qiu, W. Z.; Du, Y.; Lv, Y.; Yang, H. C.; Xu, Z.-K. Codeposition of catechol-polyethyleneimine followed by interfacial polymerization for nanofiltration membranes with enhanced stability. J. Appl. Polym. Sci. 2017, 134, 45422.

    Article  Google Scholar 

  62. Qiu, W. Z.; Zhong, Q. Z.; Du, Y.; Lv, Y.; Xu, Z.-K. Enzyme-triggered coatings of tea catechins/chitosan for nanofiltration membranes with high performance. Green Chem. 2016, 18, 6205–6208.

    Article  CAS  Google Scholar 

  63. Li, Y.; He, G.; Wang, S.; Yu, S.; Pan, F.; Wu, H.; Jiang, Z. Recent advances in the fabrication of advanced composite membranes. J. Mater. Chem. A 2013, 1, 10058.

    Article  CAS  Google Scholar 

  64. Van der Bruggen, B.; Mänttäri, M.; Nyström, M. Drawbacks of applying nanofiltration and how to avoid them: a review. Sep. Purif. Technol. 2008, 63, 251–263.

    Article  CAS  Google Scholar 

  65. Lai, G. S.; Lau, W. J.; Gray, S. R.; Matsuura, T.; Gohari, R. J.; Subramanian, M. N.; Lai, S. O.; Ong, C. S.; Ismail, A. F.; Emazadah, D.; Ghanbari, M. A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment. J. Mater. Chem. A 2016, 4, 4134–4144.

    Article  CAS  Google Scholar 

  66. Yin, J.; Deng, B. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 2015, 479, 256–275.

    Article  CAS  Google Scholar 

  67. Lv, Y.; Du, Y.; Qiu, W. Z.; Xu, Z.-K. Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability. ACS Appl. Mater. Interfaces 2017, 9, 2966–2972.

    Article  CAS  PubMed  Google Scholar 

  68. Lv, Y.; Du, Y.; Chen, Z. X.; Qiu, W. Z.; Xu, Z.-K. Nanocomposite membranes of polydopamine/electropositive nanoparticles/polyethyleneimine for nanofiltration. J. Membr. Sci. 2018, 545, 99–106.

    Article  CAS  Google Scholar 

  69. You, F.; Xu, Y.; Yang, X.; Zhang, Y.; Shao, L. Bio-inspired Ni2+-polyphenol hydrophilic network to achieve unconventional high-flux nanofiltration membranes for environmental remediation. Chem. Commun. 2017, 53, 6128–6131.

    Article  CAS  Google Scholar 

  70. Lv, Y.; Zhang, C.; He, A.; Yang, S. J.; Wu, G. P.; Darling, S. B.; Xu, Z.-K. Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment. Adv. Funct. Mater. 2017, 27, 1700251.

    Article  Google Scholar 

  71. Cadotte, J. E.; King, R. S.; Majerle, R. J.; Petersen, R. J. Interfacial synthesis in the preparation of reverse osmosis membranes. J. Macromol. Sci. Part A — Chem. 1981, 15, 727–755.

    Article  Google Scholar 

  72. Zhang, F.; Fan, J.; Wang, S. Interfacial polymerization: from chemistry to functional materials. Angew. Chem. Int. Ed. 2020, 59, 21840–21856.

    Article  CAS  Google Scholar 

  73. Freger, V. Kinetics of film formation by interfacial polycondensation. Langmuir 2005, 21, 1884–1894.

    Article  CAS  PubMed  Google Scholar 

  74. Nowbahar, A.; Mansard, V.; Mecca, J. M.; Paul, M.; Arrowood, T.; Squires, T. M. Measuring interfacial polymerization kinetics using microfluidic interferometry. J. Am. Chem. Soc. 2018, 140, 3173–3176.

    Article  CAS  PubMed  Google Scholar 

  75. McGilvery, C. M.; Abellan, P.; Kłosowski, M. M.; Livingston, A. G.; Cabral, J. T.; Ramasse, Q. M.; Porter, A. E. Nanoscale chemical heterogeneity in aromatic polyamide membranes for reverse osmosis applications. ACS Appl. Mater. Interfaces 2020, 12, 19890–19902.

    Article  CAS  PubMed  Google Scholar 

  76. Park, S. J.; Lee, J. H. Fabrication of high-performance reverse osmosis membranes via dual-layer slot coating with tailoring interfacial adhesion. J. Membr. Sci. 2020, 614, 118449.

    Article  CAS  Google Scholar 

  77. Zhao, Q.; Zhao, D. L.; Chung, T. S. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination. J. Membr. Sci. 2021, 625, 119158.

    Article  CAS  Google Scholar 

  78. Li, Y.; You, X.; Li, Y.; Yuan, J.; Shen, J.; Zhang, R.; Wu, H.; Su, Y.; Jiang, Z. Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration. J. Mater. Chem. A 2020, 8, 23930–23938.

    Article  CAS  Google Scholar 

  79. Zhang, X.; Lv, Y.; Yang, H. C.; Du, Y.; Xu, Z.-K. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance. ACS Appl. Mater. Interfaces 2016, 8, 32512–32519.

    Article  CAS  PubMed  Google Scholar 

  80. Yang, X.; Du, Y.; Zhang, X.; He, A.; Xu, Z.-K. Nanofiltration membrane with a mussel-inspired interlayer for improved permeation performance. Langmuir 2017, 33, 2318–2324.

    Article  CAS  PubMed  Google Scholar 

  81. Pan, K.; Fang, P.; Cao, B. Novel composite membranes prepared by interfacial polymerization on polypropylene fiber supports pretreated by ozone-induced polymerization. Desalination 2012, 294, 36–43.

    Article  CAS  Google Scholar 

  82. Kwon, S. J.; Park, K.; Kim, D. Y.; Zhan, M.; Hong, S.; Lee, J. H. Highperformance and durable pressure retarded osmosis membranes fabricated using hydrophilized polyethylene separators. J. Membr. Sci. 2021, 619, 118796.

    Article  CAS  Google Scholar 

  83. Huang, L.; Arena, J. T.; McCutcheon, J. R. Surface modified PVDF nanofiber supported thin film composite membranes for forward osmosis. J. Membr. Sci. 2016, 499, 352–360.

    Article  CAS  Google Scholar 

  84. Zhang, X.; Liu, C.; Yang, J.; Zhu, C. Y.; Zhang, L.; Xu, Z.-K. Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux. J. Membr. Sci. 2020, 593, 117444.

    Article  Google Scholar 

  85. Wang, Y.; Fang, Z.; Xie, C.; Zhao, S.; Ng, D.; Xie, Z. Dopamine incorporated forward osmosis membranes with high structural stability and chlorine resistance. Processes 2018, 6, 151.

    Article  CAS  Google Scholar 

  86. Heidari, A. A.; Mahdavi, H.; Khodaei kahriz, P. Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine. J. Membr. Sci. 2021, 634, 119406.

    Article  CAS  Google Scholar 

  87. Cao, Y.; Zhang, H.; Guo, S.; Luo, J.; Wan, Y. A robust dually charged membrane prepared via catechol-amine chemistry for highly efficient dye/salt separation. J. Membr. Sci. 2021, 629, 119287.

    Article  CAS  Google Scholar 

  88. Dai, R.; Li, J.; Wang, Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Adv. Colloid Interface Sci. 2020, 282, 102204.

    Article  CAS  PubMed  Google Scholar 

  89. Wu, M. B.; Lv, Y.; Yang, H. C.; Liu, L. F.; Zhang, X.; Xu, Z.-K. Thin film composite membranes combining carbon nanotube intermediate layer and microfiltration support for high nanofiltration performances. J. Membr. Sci. 2016, 515, 238–244.

    Article  CAS  Google Scholar 

  90. Wang, J. J.; Yang, H. C.; Wu, M. B.; Zhang, X.; Xu, Z.-K. Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. J. Mater. Chem. A 2017, 5, 16289–16295.

    Article  CAS  Google Scholar 

  91. Zhu, C. Y.; Zhang, X.; Xu, Z.-K. Polyamide-based membranes consisting of nanocomposite interlayers for high performance nanofiltration. J. Appl. Polym. Sci. 2021, 138, 49940.

    Article  CAS  Google Scholar 

  92. Xu, D.; Zhu, X.; Luo, X.; Guo, Y.; Liu, Y.; Yang, L.; Tang, X.; Li, G.; Liang, H. MXene nanosheet templated nanofiltration membranes toward ultrahigh water transport. Environ. Sci. Technol. 2021, 55, 1270–1278.

    Article  CAS  PubMed  Google Scholar 

  93. Kim, J. H.; Park, G. S.; Kim, Y. J.; Choi, E.; Kang, J.; Kwon, O.; Kim, S. J.; Cho, J. H.; Kim, D. W. Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication and molecular separation. ACS Nano 2021, 15, 8860–8869.

    Article  CAS  PubMed  Google Scholar 

  94. Kang, X.; Liu, X.; Liu, J.; Wen, Y.; Qi, J.; Li, X. Spin-assisted interfacial polymerization strategy for graphene oxidepolyamide composite nanofiltration membrane with high performance. Appl. Surf. Sci. 2020, 508, 145198.

    Article  CAS  Google Scholar 

  95. Kong, B. S.; Geng, J.; Jung, H. T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chem. Commun. 2009, 16, 2174.

    Article  Google Scholar 

  96. Zhu, C. Y.; Li, H. N.; Yang, J.; Li, J. J.; Ye, J. R.; Xu, Z.-K. Vacuum-assisted diamine monomer distribution for synthesizing polyamide composite membranes by interfacial polymerization. J. Membr. Sci. 2020, 616, 118557.

    Article  CAS  Google Scholar 

  97. Zhang, H.; He, Q.; Luo, J.; Wan, Y.; Darling, S. B. Sharpening nanofiltration: strategies for enhanced membrane selectivity. ACS Appl. Mater. Interfaces 2020, 12, 39948–39966.

    Article  CAS  PubMed  Google Scholar 

  98. Nadler, R.; Srebnik, S. Molecular simulation of polyamide synthesis by interfacial polymerization. J. Membr. Sci. 2008, 315, 100–105.

    Article  CAS  Google Scholar 

  99. Zhu, C. Y.; Liu, C.; Yang, J.; Guo, B. B.; Li, H. N.; Xu, Z.-K. Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration. J. Membr. Sci. 2021, 627, 119142.

    Article  CAS  Google Scholar 

  100. Wu, M.; Peng, Q. Y.; Han, L. B.; Zeng, H. B. Self-healing hydrogels and underlying reversible intermolecular interactions. Chinese J. Polym. Sci. 2021, 39, 1246–1261.

    Article  CAS  Google Scholar 

  101. Ma, Z. Y.; Zhang, X.; Liu, C.; Dong, S. N.; Yang, J.; Wu, G. P.; Xu, Z.-K. Polyamide nanofilms synthesized: via controlled interfacial polymerization on a “jelly” surface. Chem. Commun. 2020, 56, 7249–7252.

    Article  CAS  Google Scholar 

  102. Ma, Z. Y.; Xue, Y. R.; Xu, Z.-K. Alginate hydrogel assisted controllable interfacial polymerization for high-performance nanofiltration membranes. Membranes 2021, 11, 435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hartanto, Y.; Corvilain, M.; Mariën, H.; Janssen, J.; Vankelecom, I. F. J. Interfacial polymerization of thin-film composite forward osmosis membranes using ionic liquids as organic reagent phase. J. Membr. Sci. 2020, 601, 117869.

    Article  Google Scholar 

  104. Ong, C.; Falca, G.; Huang, T.; Liu, J.; Manchanda, P.; Chisca, S.; Nunes, S. P. Green synthesis of thin-film composite membranes for organic solvent nanofiltration. ACS Sustain. Chem. Eng. 2020, 8, 11541–11548.

    Article  CAS  Google Scholar 

  105. Liu, C.; Yang, J.; Guo, B. B.; Agarwal, S.; Greiner, A.; Xu, Z.-K. Interfacial polymerization at the alkane/ionic liquid interface. Angew. Chem. Int. Ed. 2021, 60, 14636–14643.

    Article  CAS  Google Scholar 

  106. Liu, C.; An, Y. P.; Yang, J.; Guo, B. B.; Yu, H. H.; Xu, Z.-K. Osmotic pressure as driving force for recovering ionic liquids from aqueous solutions. J. Membr. Sci. 2020, 599, 117835.

    Article  CAS  Google Scholar 

  107. Guo, B. B.; Liu, C.; Xin, J. H.; Zhu, C. Y.; Xu, Z.-K. Visualizing and monitoring interfacial polymerization by aggregation-induced emission. Polym. Chem. 2021, 12, 4332–4336.

    Article  CAS  Google Scholar 

  108. Liao, Z.; Zhu, J.; Li, X.; Van der Bruggen, B. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: a critical review. Sep. Purif. Technol. 2021, 266, 118567.

    Article  CAS  Google Scholar 

  109. Ma, M. Q.; Zhang, C.; Zhu, C. Y.; Huang, S.; Yang, J.; Xu, Z.-K. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance. J. Membr. Sci. 2019, 591, 117316.

    Article  CAS  Google Scholar 

  110. Yu, J. C.; Ma, M. Q.; Zhu, C. Y.; Hu, D. F.; Ji, J.; Xu, Z.-K. MoS2 membranes with photothermal conversion property for nanofiltration and antibacterial activity. Acta Polymerica Sinica (in Chinese) 2021, 52, 505–513.

    Google Scholar 

  111. Huang, S.; Wu, M. B.; Zhu, C. Y.; Ma, M. Q.; Yang, J.; Wu, J.; Xu, Z.-K. Polyamide nanofiltration membranes incorporated with cellulose nanocrystals for enhanced water flux and chlorine resistance. ACS Sustain. Chem. Eng. 2019, 7, 9b01651.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22135006). We also thank the contributions from Dr. Hao-Cheng Yang, Dr. Yan Lv, Dr. Yong Du, Dr. Wen-Ze Qiu, Dr. Ming-Bang Wu and Mr. Chang Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Kang Xu.

Additional information

Biography

Zhi-Kang Xu is a Qiushi Distinguished Professor at Zhejiang University and the director of the Key Laboratory of Adsorption and Separation in Zhejiang Province. He received his PhD degree in polymer chemistry and physics from the Chemistry Department of Zhejiang University in 1991. His current research focuses on the surface and interface engineering of polymer membranes.

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, BB., Zhu, CY. & Xu, ZK. Surface and Interface Engineering for Advanced Nanofiltration Membranes. Chin J Polym Sci 40, 124–137 (2022). https://doi.org/10.1007/s10118-022-2654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2654-z

Keywords

Navigation