Skip to main content

Advertisement

Log in

Strong, Removable, and Photoluminescent Hyperbranched Polyamide-amine Hot Melt Adhesive

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The development of adhesive technology is gaining increasing attention in machinery, electronics, aviation, and other fields. However, traditional adhesives are difficult to be peeled and removed after cross-linking and curing due to the limited solubility in common solvents, which causes pollution and damage to the surface of the adherend. In this work, we synthesized random hyperbranched polyamide-amine hot melt adhesives through Michael addition of 1,8-octanediamine and N,N’-methylene diacrylamide (ODA-RHP HMA). Owing to the presence of various polar groups, ODA-RHP HMA exhibited robust lap shear strength to different substrates, including glass (6.6 MPa), ceramics (10.3 MPa), steel (11.5 MPa), and aluminum (11.8 MPa). Due to the hydrogen bonds in ODA-RHP, the HMA demonstrated intrinsic self-healing ability, which can be used repeatedly when being subjected to cyclic heating and cooling. Since ODA-RHP HMA can be swollen or dissolved in ethanol, the adhesives can be easily removed through erasing. In addition, ODA-RHP exhibited aggregation-induced luminescence due to the tertiary amine structure in the molecular structure of ODA-RHP, which can be used in the field of cultural relics restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Matos-Perez, C. R.; White, J. D.; Wilker, J. J. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J. Am. Chem. Soc. 2012, 134, 9498–9505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kinloch, A. J. Toughening epoxy adhesives to meet today’s challenges. MRS Bull. 2003, 28, 445–448.

    Article  CAS  Google Scholar 

  3. Pruksawan, S.; Samitsu S.; Yokoyama, H.; Naito, M. Homogeneously dispersed polyrotaxane in epoxy adhesive and its improvement in the fracture toughness. Macromolecules. 2019, 52, 2464–2475.

    Article  CAS  Google Scholar 

  4. Lettieri, M.; Frigione, M. Natural and artificial weathering effects on cold-cured epoxy resins. J. Appl. Polym. Sci. 2010, 119, 1635–1645.

    Article  CAS  Google Scholar 

  5. Ma, Y.; He, L. POSS-pendanted in epoxy chain inorganic-organic hybrid for highly thermo-mechanical, permeable and hydrothermal-resistant coatings. Mater. Chem. Phys. 2017, 201, 120–129.

    Article  CAS  Google Scholar 

  6. Ma, Y.; He, L.; Jia, M.; Zhao, L.; Zuo, Y.; Hu, P. Cage and linear structured polysiloxane/epoxy hybrids for coatings: surface property and film permeability. J. Colloid Interface Sci. 2017, 500, 349–357.

    Article  CAS  PubMed  Google Scholar 

  7. Wen, L.; Bouzidi, L.; Narine, S. S. Current research and development status and prospect of hot-melt adhesives: a review. Ind. Eng. Chem. Res. 2008, 47, 7524–7532.

    Article  CAS  Google Scholar 

  8. Engels, H. W.; Pirkl, H. G.; Albers, R.; Albach, R. W.; Dormish, J. Cheminform abstract: polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441.

    Article  CAS  Google Scholar 

  9. Guo, J.; Xiang, H. X.; Wang, Q. Q.; Guan, F. C. Research progress of hot-melt adhesives. China Adhesives 2010, 19, 54–58.

    CAS  Google Scholar 

  10. Sun, L.; Li, K.; Xue W.; Zeng, Z. The effect of primers on adhesive properties and strength of adhesive joints made with polyurethane adhesives. J. Adhes. Sci. Technol. 2017, 31, 327–344.

    Article  CAS  Google Scholar 

  11. Waites, P. Moisture-curing reactive polyurethane hot-melt adhesives. Pigm. Resin Technol. 1997, 26, 300–303.

    Article  CAS  Google Scholar 

  12. Cui, C. H.; Chen, X. X.; Ma, L.; Zhong, Q. Y.; Li, Z.; Mariappan, A.; Zhang, Q.; Cheng, Y. L.; He, G.; Chen, X. Dong, Z.; An, L.; Zhang, Y. F. Polythiourethane covalent adaptable networks for strong and reworkable adhesives and fully recyclable carbon fiber-reinforced composites. ACS Appl. Mater. Interfaces 2020, 12, 47975–47983.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, S. L.; Liu, Z. H.; Zhang, L. Z. Strong, detachable, and self-healing dynamic crosslinked hot melt polyurethane adhesive. Mater. Chem. Front. 2019, 3, 1833–1839.

    Article  CAS  Google Scholar 

  14. Kaya, E.; Mathias, L. J. Investigation of melting behaviors and crystallinity of linear polyamide with high-aliphatic content. J. Appl. Polym. Sci. 2011, 123, 92–98.

    Article  CAS  Google Scholar 

  15. Latko-Duraek, P.; Macutkevic, J.; Kay, C. Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2018, 135, 45999.

    Article  CAS  Google Scholar 

  16. Wang, H.; Liu, H. C.; Cao, Z. X.; Li, W. H.; Huang, X.; Zhu, Y.; Ling, F. W.; Xu, H.; Wu, Q.; Peng, Y.; Yang, B.; Zhang, R.; Kessler, O.; Huang, G. S.; Wu, J. R. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc. Natl. Acad. Sci. 2020, 117, 11299–11305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, Z.; Xiong, X. Q.; Cheng, L. Novel hyperbranched polyimides from 2,6,12-triaminotriptycene. Chinese Chem. Lett. 2008, 19, 1127–1130.

    Article  CAS  Google Scholar 

  18. Mijovi, J.; Risti, S.; Kenny, J. Dynamics of six generations of pamam dendrimers as studied by dielectric relaxation spectroscopy. Macromolecules 2007, 40, 5212–5221.

    Article  CAS  Google Scholar 

  19. Jorg, I.; Rolf, M.; Fritz, V. Dendrimers: from generations and functional groups to functions. Angew. Chem. Int. Ed. 1995, 33, 2413–2420.

    Article  Google Scholar 

  20. Cui, C. Y.; Fan, C. C.; Wu, Y. H.; Xiao, M.; Liu, W. G. Water-triggered hyperbranched polymer universal adhesives: from strong underwater adhesion to rapid sealing hemostasis. Adv. Mater. 2019, 31, 1905761.

    Article  CAS  Google Scholar 

  21. Hong, C. Y.; You, Y. Z.; Wu, D.; Liu, Y.; Pan, C. Y. Thermal control over the topology of cleavable polymers: from linear to hyperbranched structures. J. Am. Chem. Soc. 2007, 129, 5354–5355.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, J. R.; Cai L. H.; Weitz, D. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks. Adv. Mater. 2017, 29, 1702616.

    Article  CAS  Google Scholar 

  23. Huang, Z. Z.; Wan, X. M.; Xiao, H. B. A novel soluble polyamide containing xanthene structure and trifluoromethylphenoxy pendent. Chinese Chem. Lett. 2010, 21, 242–244.

    Article  CAS  Google Scholar 

  24. Wei, H. T.; Yang, Y.; Huang, X.; Zhu, Y.; Wang, H.; Huang, G. S.; Wu, J. R. Transparent, robust, water-resistant and high-barrier self-healing elastomers reinforced with dynamic supramolecular nanosheets with switchable interfacial connections. J. Mater. Chem. A 2020, 8, 9013.

    Article  CAS  Google Scholar 

  25. Bhullar, K. A.; Meinel, A.; Maeder, K. Advanced spectroscopy, microscopy, diffraction and thermal analysis of polyamide adhesives and prediction of their functional properties with solid-state NMR spectroscopy. Polym. Chem. 2021, 12, 1487–1498.

    Article  CAS  Google Scholar 

  26. Yi, P. Q.; Li, M. T.; Yu, W.; Guan, S. Y. Novel hot-melting hyperbranched poly(ester-amine) bearing self-complementary quadruple hydrogen bonding units. Chinese Chem. Lett. 2008, 19, 868–870.

    Article  CAS  Google Scholar 

  27. Dou, X. Y.; Zhou, Q.; Chen, X. H.; Tan, Y. Q.; He, X.; Lu, P.; Sui, K. Y.; Tang, B. Z.; Zhang, Y. M. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules. 2018, 19, 2014–2022.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Y. Z.; Bin, X.; Chen, X. H.; Zheng, S. Y.; Zhang, Y. M.; Yuan, W. Z. Emission and emissive mechanism of nonaromatic oxygen clusters. Macromol. Rapid Commun. 2018, 39, 1800528.

    Article  CAS  Google Scholar 

  29. Yuan, W. Z.; Zhang, Y. Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 560–574.

    Article  CAS  Google Scholar 

  30. Yu, Z. Q.; Xu, X. M.; Hong, C. Y.; Wu, D. C.; You, Y. Z. A responsive hyperbranched polymer not only can self-immolate but also can self-cross-link. Macromolecules. 2014, 47, 4136–4143.

    Article  CAS  Google Scholar 

  31. Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L. T. Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; Sun, G.; Liang, R.; Li, Z. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017, 11, 2561–2574.

    Article  CAS  PubMed  Google Scholar 

  32. Shao, H.; Stewart, R. J. Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Adv. Mater. 2010, 22, 729–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, Q.; Danner, E.; Waite, J. H.; Israelachvili, J. N.; Zeng, H.; Hwang, D. S. Adhesion of mussel foot proteins to different substrate surfaces. J. R. Soc. Interface 2012, 10, 20120759.

    Article  CAS  Google Scholar 

  34. Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z.; Mooney, D. J. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alahakoon, S. B.; Tan, K.; Pandey, H. S.; Diwakara, D.; McCandless, G. T.; Grinffiel, D. I.; Durand-Silva, A.; Thonhauser, T.; Smaldone, R. A. 2D-covalent organic frameworks with interlayer hydrogen bonding oriented through designed onplanarity. J. Am. Chem. Soc. 2020, 142, 12987–12994.

    Article  CAS  PubMed  Google Scholar 

  36. Yao, Y.; Xu, Z. Y.; Liu, B.; Xiao, M.; Yang, J. H.; Liu, W. G. Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence. Adv. Funct. Mater. 2020, 2006944.

    Google Scholar 

  37. Hong, Y.; Lam, J.; Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 2009, 40, 4332–4353.

    Article  CAS  Google Scholar 

  38. Zhang, H.; Zhao, Z.; Mcgonigal, P. R.; Ye, R.; Liu, S.; Lam, J. Y.; Kwok, R.; Yuan, W. Z.; Xie, J.; Rogach, A. L. Clusterization-triggered emission: uncommon luminescence from common materials. Mater. Today 2020, 32, 275–292.

    Article  CAS  Google Scholar 

  39. Luo, J.; Xie, Z.; Lam, J.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741.

    Article  Google Scholar 

  40. Chen, X. X.; Zhong, Q. Y.; Cui, C. H.; Ma, L.; Zhang, Y. F. Extremely tough, puncture-resistant, transparent and photoluminescent polyurethane elastomers for crack self-diagnose and healing tracking. ACS Appl. Mater. Interfaces 2020, 12, 30847–30855.

    Article  CAS  PubMed  Google Scholar 

  41. Lee, W. I.; Bae, Y.; Bard, A. J. Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 8358–8359.

    Article  CAS  PubMed  Google Scholar 

  42. Sun, M.; Hong, C. Y.; Pan, C. Y. A unique aliphatic tertiary amine chromophore: fluorescence, polymer structure, and application in cell imaging. J. Am. Chem. Soc. 2012, 134, 20581–20584.

    Article  CAS  PubMed  Google Scholar 

  43. McFadden, P. D.; Frederick, K. L.; A Argüello; Zhang, Y. Z.; Vandiver, P.; Odegaard, N. UV fluorescent epoxy adhesives from noncovalent and covalent incorporation of coumarin dyes. ACS Appl. Mater. Interfaces 2017, 9, 10061–10068.

    Article  CAS  PubMed  Google Scholar 

  44. Baglioni, M.; Montis, C.; Chelazzi, D.; Giorgi, R.; Berti, D.; Baglioni, P. Polymer film dewetting by water/surfactant/good-solvent mixtures: a mechanistic insight and its implications for the conservation of cultural heritage. Angew. Chem. Int. Ed. 2018, 130, 7477–7481.

    Article  Google Scholar 

  45. Werner; Anthony. Synthetic materials in art conservation. J. Chem. Edu. 1981, 58, 321.

    Article  CAS  Google Scholar 

  46. Cataldi, A.; Deflorian, F.; Pegoretti, A. Poly(2-ethyl-2-oxazoline)/microcrystalline cellulose composites for cultural heritage conservation: Mechanical characterization in dry and wet state and application as lining adhesives of canvas. Int. J. Adhes. Adhes. 2015, 62, 92–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873170 and 11732012), the National Key R&D Program of China (No. 2019YFA0706801), the Key Laboratory Construction Program of Xi’an Science and Technology Bureau (No. 201805056ZD7CG40), the One Hundred Talents Program of Shaanxi Province and Shaanxi International Science and Technology Cooperation Program Project (No. 2020KW-062). The authors gratefully acknowledge Junjie Zhang at School of Chemistry of Xi’an Jiaotong University for his assistance with DSC, TGA, NMR, FTIR, and UV-Vis analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling He or Yan-Feng Zhang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SJ., Chen, XX., Cui, CH. et al. Strong, Removable, and Photoluminescent Hyperbranched Polyamide-amine Hot Melt Adhesive. Chin J Polym Sci 39, 1319–1327 (2021). https://doi.org/10.1007/s10118-021-2630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2630-z

Keywords

Navigation