Skip to main content
Log in

Reversible Chain Transfer Catalyzed Polymerization with Alkyl Iodides Generated from Alkyl Bromides by in Situ Halogen Exchange

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Reversible chain transfer catalyzed polymerization (RTCP) is a practical and efficient process for the precise synthesis of polymers with special architecture by using simple phenols (2,4,6-trimethylphenol, TMP) or hydrocarbons (xanthene, XT) as efficient organocatalysts. Herein, alkyl iodide (R-I), which was generated from in situ bromine-iodine transformation of alkyl bromide (R-Br) with sodium iodide (NaI), was served as initiator to mediate RTCP with TMP or XT. MMA and other functional methacrylates, including GMA, DEAM, DMAEMA and BzMA, were successfully initiated by combining organocatalysts and azo initiators to yield polymers with low-polydispersity (Mw/Mn=1.1–1.5) and ideal monomer conversions (50%–90%) at moderate temperature. Moreover, 3-armstar polymers were also obtained by this method. The high chain-end fidelity of the obtained poly(methyl methacrylate) with iodine as chain-end group (PMMA-I) was confirmed by chain-extension reaction. The environmentally friendly initiators and organocatalysts exhibit powerful polymerization properties toward RTCP, providing a significant method to synthesize functional polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohtsuki, A., Lei, L.; Tanishima, M.; Goto, A.; Kaji, H. Photocontrolled organocatalyzed living radical polymerization feasible over awide range of wavelengths. J. Am. Chem. Soc. 2015, 137, 5610–5617.

    Article  CAS  PubMed  Google Scholar 

  2. Goto, A.; Sanada, S.; Lei, L.; Hori, K. Theoretical and experimental studies on elementary reactions in living radical polymerization via organic amine catalysis. Macromolecules 2016, 49, 2511–2517.

    Article  CAS  Google Scholar 

  3. Chang, J.; Xiao, L.; Wang, C.; Niino, H.; Chatani, S.; Goto, A. Use of Poly(methyl methacrylate) with an unsaturated chain end as amacroinitiator precursor in organocatalyzed living radical block polymerization. Polym. Chem. 2018, 9, 4848–4855.

    Article  CAS  Google Scholar 

  4. Wang, C.; Chen, C.; Sakakibara, K.; Tsujii, Y.; Goto A. Facile fabrication of concentrated polymer brushes with complex patterning by photocontrolled organocatalyzed living radical polymerization. Angew. Chem. Int. Ed. 2018, 57, 13504–13508.

    Article  CAS  Google Scholar 

  5. Liu, X.; Wang, C.; Goto, A. Polymer Dispersity control by organocatalyzed living radical polymerization. Angew. Chem. Int. Ed. 2019, 58, 5598–5603.

    Article  CAS  Google Scholar 

  6. Ni, Y.; Zhang, L.; Cheng, Z.; Zhu, X. Iodine-mediated reversible-deactivation radical polymerization: apowerful strategy for polymer synthesis. Polym. Chem. 2019, 10, 2504–2515.

    Article  CAS  Google Scholar 

  7. Yu, H. Y.; Wang, J.; Shao, J. W.; Chen, D.; Wang, S. C.; Wang, L.; Yang, W. T. Controlled radical polymerization of styrene mediated by xanthene-9-thione and its derivatives. Chinese J. Polym. Sci. 2018, 36, 1303–1311.

    Article  CAS  Google Scholar 

  8. Zhong, Z. R.; Chen, Y. N.; Zhou, Y.; Chen, M. Challenges and recent developments of photoflow-reversible deactivation radical polymerization (RDRP). Chinese J. Polym. Sci. 2021, DOI: https://doi.org/10.1007/s10118-021-2529-8

  9. Grubbs, R. B. Nitroxide-mediated radical polymerization: limitations and versatility. Polym. Rev. 2011, 51, 104–137.

    Article  CAS  Google Scholar 

  10. Song, P.; Guo, R.; Ma, W.; Wang, L.; Ma, F.; Wang, R. Synthesis of CO2-based polycarbonate-g-polystyrene copolymers via NMRP. Chem. Commun. 2020, 56, 9493–9496.

    Article  CAS  Google Scholar 

  11. Wang, J.; Han, J.; Peng, H.; Tang, X.; Zhu, J.; Liao, R.; Xie, X.; Xue, Z.; Fliedel, C.; Poli, R. Bromoalkyl ATRP initiator activation by inorganic salts: experiments and computations. Polym. Chem. 2019, 10, 2376–2386.

    Article  CAS  Google Scholar 

  12. Lu, Z.; Fu, X.; Yang, H.; Zhao, Y.; Xiao, L.; Hou, L. A covalent organic framework as aphotocatalyst for atom transfer radical polymerization under white light irradiation. Polym. Chem. 2021, 12, 183–188.

    Article  Google Scholar 

  13. Zhang, F. J.; Liu, X. H. ICAR ATRP of acrylonitrile utilizing a moderate temperature radical initiator. Chinese J. Polym. Sci. 2013, 31, 1613–1622.

    Article  CAS  Google Scholar 

  14. Huang, G. C. Ji, S. X. Effect of halogen chain end fidelity on the synthesis of poly(methyl methacrylate-b-styrene) by ATRP. Chinese J. Polym. Sci. 2018, 36, 1217–1224.

    Article  CAS  Google Scholar 

  15. Bergerbit, C.; Farías-Mancilla, B.; Seiler, L.; Monteil, V.; Harrisson, S.; D’Agosto, F.; Destarac, M. Synthesis of PMMA-based block copolymers by consecutive irreversible and reversible addition-fragmentation chain transfer polymerizations. Polym. Chem. 2019, 10, 6630–6640.

    Article  CAS  Google Scholar 

  16. Reyhani, A.; McKenzie, T.; Fu, Q.; Qiao, G. Redox-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Aust. J. Chem. 2019, 72, 479.

    Article  CAS  Google Scholar 

  17. Zhang, L.; Gao, Q. Y.; Huang, Z. H.; Zhang, W.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Controllably growing topologies in one-shot RAFT polymerization via macro-latent monomer strategy. Chinese J. Polym. Sci. 2020, 39, 60–69.

    Article  CAS  Google Scholar 

  18. Dadashi-Silab, S.; Szczepaniak, G.; Lathwal, S.; Matyjaszewski, K. Iodine-mediated photoATRP in aqueous media with oxygen tolerance. Polym. Chem. 2020, 11, 843–848.

    Article  CAS  Google Scholar 

  19. Goto, A.; Suzuki, T.; Ohfuji, H.; Tanishima, M.; Fukuda, T.; Tsujii, Y.; Kaji, H. Reversible complexation mediated living radical polymerization (RCMP) using organic catalysts. Macromolecules 2011, 44, 8709–8715.

    Article  CAS  Google Scholar 

  20. Feng, C.; Li, Y.; Yang, D.; Hu, J.; Zhang, X.; Huang, X. Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem. Soc. Rev. 2011, 40, 1282–1295.

    Article  CAS  PubMed  Google Scholar 

  21. Nese, A.; Lebedeva, N. V.; Sherwood, G.; Averick, S.; Li, Y.; Gao, H.; Peteanu, L.; Sheiko, S.; Matyjaszewski, K. pH-Responsive fluorescent molecular bottlebrushes prepared by atom transfer radical polymerization. Macromolecules 2011, 44, 5905–5910.

    Article  CAS  Google Scholar 

  22. Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem. Soc. Rev. 2015, 44, 2405–2420.

    Article  CAS  PubMed  Google Scholar 

  23. Xu, B.; Feng, C.; Huang, X. A versatile platform for precise synthesis of asymmetric molecular brush in one shot. Nat. Commun. 2017, 8, 333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Goto, A.; Zushi, H.; Hirai, N.; Wakada, T.; Tsujii, Y.; Fukuda, T. Living radical polymerizations with germanium, tin, and phosphorus catalysts-reversible chain transfer catalyzed polymerizations (RTCPs). J. Am. Chem. Soc. 2007, 129, 13347–13354.

    Article  CAS  PubMed  Google Scholar 

  25. Goto, A.; Nagasawa, K.; Shinjo, A.; Tsujii, Y.; Fukuda, T. Reversible chain transfer catalyzed polymerization of methyl methacrylate with in-situ formed alkyl iodide initiator. Aust. J. Chem. 2009, 62, 1492–1495.

    Article  CAS  Google Scholar 

  26. Goto, A.; Hirai, N.; Wakada, T.; Nagasawa, K.; Tsujii, Y.; Fukuda, T. Living radical polymerization with nitrogen catalyst: reversible chain transfer catalyzed polymerization with N-iodosuccinimide. Macromolecules 2008, 41, 6261–6264.

    Article  CAS  Google Scholar 

  27. Goto, A.; Hirai, N.; Nagasawa, K.; Tsujii, Y.; Fukuda, T.; Kaji, H. Phenols and carbon compounds as efficient organic catalysts for reversible chain transfer catalyzed living radical polymerization (RTCP). Macromolecules 2010, 43, 7971–7978.

    Article  CAS  Google Scholar 

  28. Goto, A.; Hirai, N.; Tsujii, Y.; Fukuda, T. Reversible chain transfer catalyzed polymerizations (RTCPs) of styrene and methyl methacrylate with phosphorus catalysts. Macromol. Symp. 2008, 261, 18–22.

    Article  CAS  Google Scholar 

  29. Goto, A.; Zushi, H.; Hirai, N.; Wakada, T.; Kwak, Y.; Fukuda, T. Germanium- and tin-catalyzed living radical polymerizations of styrene and methacrylates. Macromol. Symp. 2007, 248, 126–131.

    Article  CAS  Google Scholar 

  30. Goto, A.; Tsujii, Y.; Fukuda, T. Reversible chain transfer catalyzed polymerization (RTCP): anew class of living radical polymerization. Polymer 2008, 49, 5177–5185.

    Article  CAS  Google Scholar 

  31. Bompart, M.; Goto, A.; Wattraint, O.; Sarazin, C.; Tsujii, Y.; Gonzato, C.; Haupt, K. Molecularly imprinted polymers by reversible chain transfer catalysed polymerization. Polymer 2015, 78, 31–36.

    Article  CAS  Google Scholar 

  32. Goto, A.; Wakada, T.; Fukuda, T.; Tsujii, Y. A systematic kinetic study in reversible chain transfer catalyzed polymerizations (RTCPs) with germanium, tin, phosphorus, and nitrogen catalysts. Macromol. Chem. Phys. 2010, 211, 594–600.

    Article  CAS  Google Scholar 

  33. Vana, P.; Goto, A. Kinetic simulations of reversible chain transfer catalyzed polymerization (RTCP): guidelines to optimum molecular weight control. Macromol. Theor. Simul. 2010, 19, 24–35.

    Article  CAS  Google Scholar 

  34. Kitayama, Y.; Yorizane, M.; Minami, H.; Okubo, M. Iodine transfer polymerization (ITP with CHI3) and reversible chain transfer catalyzed polymerization (RTCP with nitrogen catalyst) of methyl methacrylate in aqueous microsuspension systems: comparison with bulk system. Macromolecules 2012, 45, 2286–2291.

    Article  CAS  Google Scholar 

  35. Kuroda, T.; Tanaka, A.; Taniyama, T.; Minami, H.; Goto, A.; Fukuda, T.; Okubo, M. Iodine transfer dispersion polymerization (dispersion ITP) with CHI3 and reversible chain transfer catalyzed dispersion polymerization (dispersion RTCP) with GeI4 of styrene in supercritical carbon dioxide. Polymer 2012, 53, 1212–1218.

    Article  CAS  Google Scholar 

  36. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B. Use of iodocompounds in radical polymerization. Chem. Rev. 2006, 106, 3936–3962.

    Article  CAS  PubMed  Google Scholar 

  37. Fukuda, T.; A. Goto.; Ohno, K. Mechanisms and kinetics of living radical polymerizations. Macromol. Rapid Commun. 2000, 21, 151–165.

    Article  CAS  Google Scholar 

  38. Guo, B.; Hou, L.; Li, Y.; Xiao, L. Organocatalyzed controlled radical polymerization with alkyl bromide initiator via in situ halogen exchange under thermal condition. Polymer 2020, 189, 122201.

    Article  CAS  Google Scholar 

  39. Xiao, L.; Sakakibara, K.; Tsujii, Y.; Goto, A. Organocatalyzed living radical polymerization via in situ halogen exchange of alkyl bromides to alkyl iodides. Macromolecules 2017, 50, 1882–1891.

    Article  CAS  Google Scholar 

  40. Xu, Q.; Tian, C.; Zhang, L.; Cheng, Z.; Zhu, X. Photo-controlled polymerization-induced self-assembly (photo-PISA): anovel strategy using in situ bromine-iodine transformation living radical polymerization. Macromol. Rapid Commun. 2019, 40, 1800327–1800333.

    Article  CAS  Google Scholar 

  41. Chen, C.; Xiao, L.; Goto, A. Comprehensive study on chain-end transformation of polymer-iodides with amines for synthesizing various chain-end functionalized polymers. Macromolecules 2016, 49, 9425–9440.

    Article  CAS  Google Scholar 

  42. Sarkar, J.; Xiao, L.; Goto, A. Living radical polymerization with alkali and alkaline earth metal iodides as catalysts. Macromolecules 2016, 49, 5033–5042.

    Article  CAS  Google Scholar 

  43. Liu, X.; Xu, Q.; Zhang, L.; Cheng, Z.; Zhu, X. Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost. Polym. Chem. 2017, 8, 2538–2551.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from Natural Science Foundation of Fujian Province (No.2019J05040), Key Program of Qingyuan Innovation Laboratory (No. 00221003), ‘111′ program and Talent program of Fuzhou University (No. GXRC-18041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Xi Hou or Long-Qiang Xiao.

Electronic Supplementary Information

10118_2021_2611_MOESM1_ESM.pdf

Reversible Chain Transfer Catalyzed Polymerization with Alkyl Iodides Generated from Alkyl Bromides by in Situ Halogen Exchange

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, DN., Zhao, YL., Cai, JY. et al. Reversible Chain Transfer Catalyzed Polymerization with Alkyl Iodides Generated from Alkyl Bromides by in Situ Halogen Exchange. Chin J Polym Sci 39, 1161–1168 (2021). https://doi.org/10.1007/s10118-021-2611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2611-2

Keywords

Navigation