Skip to main content
Log in

Mathematical modelling and numerical simulation of the non-isothermal in-mold vulcanization of natural rubber

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

According to the vulcanization kinetic equation of natural rubber (NR) established in the isothermal situation, the numerical computation expression of the degree of cure under non-isothermal condition is constructed by means of incremental method. The description of non-isothermal in-mold vulcanization process is carried out by the finite element method. The mold-opening time, the rubber and mold temperatures, the degree of rubber cure and its distribution characteristics are numerically analyzed, by changing the key formulas and parameters in the process including the temperature of curing medium, the concentration of 2-mercaptobenzothiazole, the heat transfer manner of mold side, and the convective heat transfer coefficient of heating boundary. The quantitative results will help engineers to design proper formulas and optimize processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, W.B., Wang, L., Yang, Q., Xiang, W.D., Gao, J.M. and Amer, W.A., Int. Polym. Proc., 2013, 28(2): 132

    Article  CAS  Google Scholar 

  2. Rahimi, A. and Mashak, A., Plast., Rubber Compos., 2013, 42(6): 223

    Article  CAS  Google Scholar 

  3. Aprem, A.S., Joseph, K. and Thomas, S., Rubber Chem. Technol., 2005, 78(3): 458

    Article  CAS  Google Scholar 

  4. Jia, Y.X., Wang, X.X., Feng, L.G. and An, L.J., Eur. Polym. J., 2009, 45(6): 1759

    Article  CAS  Google Scholar 

  5. Akiba, M. and Hashim, A.S., Prog. Polym. Sci. (Oxford), 1997, 22(3): 4751

    Article  Google Scholar 

  6. Wang, X.X., Jia, Y.X., Feng, L.G. and An, L.J., Macromol. Theory Simul., 2009, 18: 268

    Article  Google Scholar 

  7. Isayev, A.I. and Wan, M., Rubber Chem. Technol., 1998, 71(5): 1059

    Article  CAS  Google Scholar 

  8. Han, I.S., Chung, C.B., Jeong, H.G., Kang, S.J., Kim, S.J. and Jung, H.C., J. Appl. Polym. Sci., 1999, 74(8): 2063

    Article  CAS  Google Scholar 

  9. Ghoreishy, M.H.R. and Naderi, G., J. Elastomers Plast., 2005, 37(1): 37

    Article  CAS  Google Scholar 

  10. Shojaei, A., Int. Polym. Proc., 2006, 21(4): 421

    Article  CAS  Google Scholar 

  11. Bruger, T. and Broock, U.Von., Kautsch. Gummi Kunstst., 2007, 60(7/8): 368

    Google Scholar 

  12. Arrillaga, A., Zaldua, A.M., Atxurra, R.M. and Farid, A.S., Eur. Polym. J., 2007, 43(11): 4783

    Article  CAS  Google Scholar 

  13. Yan, X.Q., Polym. J., 2007, 39(10): 1001

    Article  CAS  Google Scholar 

  14. Nozu, S., Tsuji, H., Itadani, M., Fujiwara, W. and Ohnishi, K., J. Mater. Process. Technol., 2008, 201(1/3): 720

    Article  CAS  Google Scholar 

  15. Jia, Y.X., Sun, S., Liu, L.L., Xue, S.X. and Zhao, G.Q., Polymer, 2003, 44(1): 319

    Article  CAS  Google Scholar 

  16. Jia, Y.X., Sun, S., Xue, S.X., Liu, L.L. and Zhao, G.Q., Polymer, 2002, 43(26): 7515

    Article  CAS  Google Scholar 

  17. Wang, P.Y., Qian, H.L., Yu, H.P. and Chen, J., J. Appl. Polym. Sci., 2003, 88(3): 680

    Article  CAS  Google Scholar 

  18. Wang, P.Y., Qian, H.L. and Yu, H.P., J. Appl. Polym. Sci., 2004, 92(5): 3260

    Article  CAS  Google Scholar 

  19. Wang, P.Y., Qian, H.L. and Yu, H.P., J. Appl. Polym. Sci., 2006, 101(1): 580

    Article  CAS  Google Scholar 

  20. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., Fundamentals of Heat and Mass Transfer, Wiley, New York, 2007

    Google Scholar 

  21. Welty, J.R., Wicks, C.E., Wilson, R.E. and Rorrer, G., Fundamentals of Momentum, Heat and Mass Transfer, Wiley, New York, 2001

    Google Scholar 

  22. Choi, D., Kader, M.A., Cho, B.H., Huh, Y.I. and Nah, C., J. Appl. Polym. Sci., 2005, 98(4): 1688

    Article  CAS  Google Scholar 

  23. Fan, R.L., Zhang, Y., Li, F., Zhang, Y.X., Sun, K. and Fan, Y.Z., Polym. Test., 2001, 20(8): 925

    Article  CAS  Google Scholar 

  24. Ding, R. and Leonov, A.I., J. Appl. Polym. Sci., 1996, 61(3): 455

    Article  CAS  Google Scholar 

  25. McCabe, W.L., Smith, J.C. and Harriott, P., Unit Operations of Chemical Engineering, McGraw-Hill, New York, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-xi Jia  (贾玉玺).

Additional information

This work was financially supported by the National Key Basic Research Program of China (2012CB821505), and the Natural Science Foundation of Shandong Province (No. JQ201016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Dh., Dong, Q. & Jia, Yx. Mathematical modelling and numerical simulation of the non-isothermal in-mold vulcanization of natural rubber. Chin J Polym Sci 33, 395–403 (2015). https://doi.org/10.1007/s10118-015-1594-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1594-2

Keywords

Navigation