Skip to main content
Log in

A streaming edge sampling method for network visualization

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Visualization strategies facilitate streaming network analysis by allowing its exploration through graphical and interactive layouts. Depending on the strategy and the network density, such layouts may suffer from a high level of visual clutter that hides meaningful temporal patterns, highly active groups of nodes, bursts of activity, and other important network properties. Edge sampling improves layout readability, highlighting important properties and leading to easier and faster pattern identification and decision making. This paper presents Streaming Edge Sampling for Network Visualization–SEVis, a streaming edge sampling method that discards edges of low-active nodes while preserving a distribution of edge counts that is similar to the original network. It can be applied to a variety of layouts to enhance streaming network analyses. We evaluated SEVis performance using synthetic and real-world networks through quantitative and visual analyses. The results indicate a higher performance of SEVis for clutter reduction and pattern identification when compared with other sampling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. www.dynetvis.com.

  2. https://github.com/claudiodgl/DyNetVis.

References

  1. Aggarwal CC (2006) Data streams: models and algorithms (advances in database systems). Springer, Berlin

    Google Scholar 

  2. Aggarwal CC, Zhao Y, Philip SY (2011) Outlier detection in graph streams. In: 2011 IEEE 27th international conference on data engineering, pp 399–409. IEEE

  3. Ahmed NK, Neville J, Kompella R (2013) Network sampling: from static to streaming graphs. ACM Trans Knowl Discov Data 8(2):7:1–7:56. https://doi.org/10.1145/2601438

  4. Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764. https://doi.org/10.1038/nature09182

    Article  Google Scholar 

  5. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97. https://doi.org/10.1103/revmodphys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  6. Bach B (2016) Unfolding dynamic networks for visual exploration. IEEE Comput Graph Appl 36(2):74–82. https://doi.org/10.1109/MCG.2016.32

    Article  Google Scholar 

  7. Bach B, Pietriga E, Fekete JD (2014) GraphDiaries: animated transitions and temporal navigation for dynamic networks. IEEE Trans Vis Comput Graph 20(5):740–754. https://doi.org/10.1109/TVCG.2013.254

    Article  Google Scholar 

  8. Basaille I, Kirgizov S, Leclercq E, Savonnet M, Cullot N (2016) Towards a twitter observatory: a multi-paradigm framework for collecting, storing and analysing tweets. In: IEEE tenth international conference on research challenges in information science (RCIS). Grenoble, France, pp 1–10. https://doi.org/10.1109/RCIS.2016.7549324

  9. Beck F, Burch M, Diehl S, Weiskopf D (2017) A taxonomy and survey of dynamic graph visualization. Comput Graph Forum 36(1):133–159. https://doi.org/10.1111/cgf.12791

    Article  Google Scholar 

  10. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 2008:P10008

    Article  Google Scholar 

  11. Burch M (2016) Visual analytics of large dynamic digraphs. Inf Vis. https://doi.org/10.1177/1473871616661194

    Article  Google Scholar 

  12. Crnovrsanin T, Chu J, Ma KL (2015) An incremental layout method for visualizing online dynamic graphs. In: Revised selected papers of the 23rd international symposium on graph drawing and network visualization - volume 9411, GD 2015. Springer Inc., New York, pp 16–29. https://doi.org/10.1007/978-3-319-27261-0_2

  13. Deng X, Zhai J, Lv T, Yin L (2017) Efficient vector influence clustering coefficient based directed community detection method. IEEE Access 5:17106–17116. https://doi.org/10.1109/ACCESS.2017.2740962

    Article  Google Scholar 

  14. Drif A, Boukerram A (2014) Taxonomy and survey of community discovery methods in complex networks. Int J Comput Sci Eng Surv 5(4):1. https://doi.org/10.5121/ijcses.2014.5401

    Article  Google Scholar 

  15. Eades P, Tamassia R (1994) Algorithms for drawing graphs: an annotated bibliography. Comput Geom 4(5):235–282. https://doi.org/10.1016/0925-7721(94)00014-X

    Article  MathSciNet  MATH  Google Scholar 

  16. van den Elzen S, Holten D, Blaas J, van Wijk JJ (2014) Dynamic network visualization with extended massive sequence views. IEEE Trans Vis Comput Graph 20(8):1087–1099. https://doi.org/10.1109/TVCG.2013.263

    Article  Google Scholar 

  17. Estrada E (2015) Introduction to complex networks: structure and dynamics. Springer International Publishing, Cham, pp 93–131. https://doi.org/10.1007/978-3-319-11322-7_3

    Book  MATH  Google Scholar 

  18. Etemadi R, Lu J (2019) Pes: Priority edge sampling in streaming triangle estimation. IEEE Trans Big Data

  19. Fortunato S (2010) Community detection in graph. Phys Rep 46(3):75–174. https://doi.org/10.1016/j.physrep.2009.11.002

    Article  MathSciNet  Google Scholar 

  20. Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep 659:1–44

    Article  MathSciNet  Google Scholar 

  21. Gama J (2010) Knowledge discovery from data streams, 1st edn. Chapman & Hall/CRC, Cambridge

    Book  Google Scholar 

  22. Hassani H, Silva E (2015) A kolmogorov-smirnov based test for comparing the predictive accuracy of two sets of forecasts. Econometrics 3:590–609. https://doi.org/10.3390/econometrics3030590

    Article  Google Scholar 

  23. Hlawatsch M, Burch M, Weiskopf D (2014) Visual adjacency lists for dynamic graphs. IEEE Trans Vis Comput Graph 20(11):1590–1603

    Article  Google Scholar 

  24. Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125

    Article  Google Scholar 

  25. Holten D, Cornelissen B, van Wijk JJ (2007) Trace visualization using hierarchical edge bundles and massive sequence views. In: 2007 4th IEEE international workshop on visualizing software for understanding and analysis, pp 47–54. https://doi.org/10.1109/VISSOF.2007.4290699

  26. Hu P, Lau WC (2013) A survey and taxonomy of graph sampling. arXiv:1308.5865

  27. Jha M, Seshadhri C, Pinar A (2015) A space-efficient streaming algorithm for estimating transitivity and triangle counts using the birthday paradox. ACM Trans Knowl Discov Data. https://doi.org/10.1145/2700395

    Article  Google Scholar 

  28. Jrad N, Kachenoura A, Nica A, Merlet I, Wendling F (2017) A Page-Hinkley based method for HFOs detection in epileptic depth-EEG. In: 25th European signal processing conference (EUSIPCO), pp 1295–1299. IEEE. https://doi.org/10.23919/EUSIPCO.2017.8081417

  29. Keila PS, Skillicorn DB (2005) Structure in the enron email dataset. Comput Math Organ Theory 11(3):183–199. https://doi.org/10.1007/s10588-005-5379-y

    Article  MATH  Google Scholar 

  30. Leskovec J, Faloutsos C (2006) Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 631–636

  31. Li H (2014) Smile. https://haifengl.github.io

  32. Lim KH, Datta A (2012) Following the follower: detecting communities with common interests on Twitter. In: Proceedings of the 23rd ACM conference on hypertext and social media, HT ’12. ACM, New York, pp 317–318. https://doi.org/10.1145/2309996.2310052

  33. Linhares CD, Ponciano JR, Pereira FS, Rocha LE, Paiva JGS, TravençSolo BA (2019) A scalable node ordering strategy based on community structure for enhanced temporal network visualization. Comput Graph 84:185–198. https://doi.org/10.1016/j.cag.2019.08.006

    Article  Google Scholar 

  34. Linhares CDG, Ponciano JR, Paiva JGS, Rocha LEC, TravençSolo BAN (2020) Dynetvis—an interactive software to visualize structure and epidemics on temporal networks. In: 2020 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM), pp 933–936. https://doi.org/10.1109/ASONAM49781.2020.9381304

  35. Linhares CDG, Ponciano JR, Paiva JGS, Travençolo BAN, Rocha LEC (2019) Visualisation of structure and processes on temporal networks. Springer International Publishing, Cham, pp 83–105. https://doi.org/10.1007/978-3-030-23495-9_5

  36. Linhares CDG, Ponciano JR, Pereira FSF, Rocha LEC, Paiva JGS, Travençolo BAN (2020) Visual analysis for evaluation of community detection algorithms. Multimed Tools Appl 79(25):17645–17667. https://doi.org/10.1007/s11042-020-08700-4

    Article  Google Scholar 

  37. Linhares CDG, Travençolo BAN, Paiva JGS, Rocha LEC (2017) DyNetVis: a system for visualization of dynamic networks. In: Proceedings of the symposium on applied computing, SAC ’17. ACM, Marrakech, Morocco, pp 187–194. https://doi.org/10.1145/3019612.3019686

  38. Malliaros FD, Vazirgiannis M (2013) Clustering and community detection in directed networks: a survey. Phys Rep 533(4):95–142. https://doi.org/10.1016/j.physrep.2013.08.002

    Article  MathSciNet  MATH  Google Scholar 

  39. Metwally A, Agrawal D, El Abbadi A (2005) Efficient computation of frequent and top-k elements in data streams. In: International conference on database theory, pp 398–412. Springer

  40. Mitra B, Tabourier L, Roth C (2012) Intrinsically dynamic network communities. Comput Netw 56(3):1041–1053. https://doi.org/10.1016/j.comnet.2011.10.024

    Article  Google Scholar 

  41. Moody J, McFarland D, Bender-deMoll S (2005) Dynamic network visualization. Am J Sociol 110(4):1206–1241

    Article  Google Scholar 

  42. Mothe J, Mkhitaryan K, Haroutunian M (2017) Community detection: comparison of state of the art algorithms. In: 2017 computer science and information technologies (CSIT), pp 125–129. https://doi.org/10.1109/CSITechnol.2017.8312155

  43. Newman ME (2004) Detecting community structure in networks. Eur Phys J B 38(2):321–330

    Article  Google Scholar 

  44. Orman GK, Cherifi H, Labatut V (2011) On accuracy of community structure discovery algorithms. J Converg Inf Technol 6:283–292. https://doi.org/10.4156/jcit.vol6.issue11.32

    Article  Google Scholar 

  45. Orman GK, Labatut V, Cherifi H (2012) Comparative evaluation of community detection algorithms: a topological approach. J Stat Mech: Theory Exp 08:P08001. https://doi.org/10.1088/1742-5468/2012/08/p08001

    Article  Google Scholar 

  46. Orman GK, Labatut V, Plantevit M, Boulicaut JF (2014) A method for characterizing communities in dynamic attributed complex networks. In: IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2014), pp 481–484. IEEE. https://doi.org/10.1109/ASONAM.2014.6921629

  47. Page ES (1954) Continuous inspection schemes. Biometrika 41(1/2):100–115. https://doi.org/10.2307/2333009

    Article  MathSciNet  MATH  Google Scholar 

  48. Pereira FS, de Amo S, Gama J (2016) Detecting events in evolving social networks through node centrality analysis. In: STREAMEVOLV@ ECML-PKDD

  49. Pereira FS, Amo Sd, Gama J (2016) Detecting events in evolving social networks through node centrality analysis. In: Workshop on large-scale learning from data streams in evolving environments of ECML PKDD, pp 83–93

  50. Pereira FSF, d. Amo S, Gama J (2016) Evolving centralities in temporal graphs: a twitter network analysis. In: 2016 17th IEEE international conference on mobile data management (MDM), vol 2, pp 43–48. https://doi.org/10.1109/MDM.2016.88

  51. Ponciano JR, Linhares CDG, Melo SL, Lima LV, Travençolo BAN (2020) Visual analysis of contact patterns in school environments. Inf Edu 19(3):455–472. https://doi.org/10.15388/infedu.2020.20

    Article  Google Scholar 

  52. Porter MA, Onnela JP, Mucha PJ (2009) Communities in networks. Not Am Math Soc 56(9):1082–1097

    MathSciNet  MATH  Google Scholar 

  53. Ranshous S, Shen S, Koutra D, Harenberg S, Faloutsos C, Samatova NF (2015) Anomaly detection in dynamic networks: a survey. WIREs Comput Stat 7(3):223–247. https://doi.org/10.1002/wics.1347

    Article  MathSciNet  Google Scholar 

  54. Rocha LEC, Masuda N, Holme P (2017) Sampling of temporal networks: methods and biases. Phys Rev E. https://doi.org/10.1103/PhysRevE.96.052302

    Article  Google Scholar 

  55. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123. https://doi.org/10.1073/pnas.0706851105

    Article  Google Scholar 

  56. Rosvall M, Bergstrom CT (2010) Mapping change in large networks. PLoS ONE 5(1):1–7. https://doi.org/10.1371/journal.pone.0008694

    Article  Google Scholar 

  57. Rosvall M, Delvenne JC, Schaub MT, Lambiotte R (2019) Different approaches to community detection, chap. 4, pp 105–119. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119483298.ch4

  58. Sah P, Singh LO, Clauset A, Bansal S (2014) Exploring community structure in biological networks with random graphs. BMC Bioinform 15(1):220. https://doi.org/10.1186/1471-2105-15-220

    Article  Google Scholar 

  59. Sarmento R, Cordeiro M, Gama J (2014) Visualization for streaming networks. In: Proceedings of the 3rd workshop on new frontiers in mining complex patterns (NFMCP 2014), pp 62–74 (2014)

  60. Sarmento R, Cordeiro M, Gama Ja (2015) Streaming networks sampling using top-k networks. In: Proceedings of the 17th international conference on enterprise information systems - volume 1, ICEIS 2015, pp 228–234. SCITEPRESS - Science and Technology Publications, Lda, Setubal, PRT. https://doi.org/10.5220/0005341402280234

  61. Sarmento R, Oliveira M, Cordeiro M, Tabassum S, Gama J (2016) Social network analysis in streaming call graphs. In: Big data analysis: new algorithms for a new society, pp 239–261. Springer

  62. Schmauder H, Burch M, Weiskopf D (2015) Visualizing dynamic weighted digraphs with partial links. In: IVAPP (2015)

  63. Sebastião R, Fernandes JM (2017) Supporting the page-hinkley test with empirical mode decomposition for change detection. In: International symposium on methodologies for intelligent systems. Springer, Cham, pp 492–498. https://doi.org/10.1007/978-3-319-60438-1_48

  64. Sebastião R, Gama J (2009) A study on change detection methods. In: New trends in artificial intelligence, 14th Portuguese conference on artificial intelligence, EPIA, pp 353–364. Springer

  65. Sebastião R, Silva MM, Rabiço R, Gama J, Mendonça T (2013) Real-time algorithm for changes detection in depth of anesthesia signals. Evol Syst 4(1):3–12. https://doi.org/10.1007/s12530-012-9063-4

    Article  Google Scholar 

  66. Shetty J, Adibi J (2004) The enron email dataset database schema and brief statistical report. Information sciences institute technical report, University of Southern California vol 4, pp 120–128

  67. Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE symposium on visual languages, pp 336–343. IEEE. https://doi.org/10.1109/VL.1996.545307

  68. Sikdar S, Chakraborty T, Sarkar S, Ganguly N, Mukherjee A (2018) Compas: Community preserving sampling for streaming graphs. In: Proceedings of the 17th international conference on autonomous agents and multiagent systems, pp 184–192. International foundation for autonomous agents and multiagent systems

  69. van den Elzen S, Holten D, Blaas J, van Wijk JJ (2013) Reordering massive sequence views: Enabling temporal and structural analysis of dynamic networks. In: 2013 IEEE Pacific visualization symposium (PacificVis), pp 33–40

  70. Vanhems P, Barrat A, Cattuto C, Pinton JF, Khanafer N, Régis C, Kim BA, Comte B, Voirin N (2013) Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE 8:e73970

    Article  Google Scholar 

  71. Vehlow C, Beck F, Auwärter P, Weiskopf D (2015) Visualizing the evolution of communities in dynamic graphs. Comput Graph Forum 34(1):277–288. https://doi.org/10.1111/cgf.12512

    Article  Google Scholar 

  72. Vitter JS (1985) Random sampling with a reservoir. ACM Trans Math Softw 11(1):37–57. https://doi.org/10.1145/3147.3165

    Article  MathSciNet  MATH  Google Scholar 

  73. Ware C (2013) Information Visualization (Third Edition), p 514. Interactive Technologies. Morgan Kaufmann, Boston. https://doi.org/10.1016/B978-0-12-381464-7.00018-1. https://www.sciencedirect.com/science/article/pii/B9780123814647000181

  74. Zhang J (2010) A survey on streaming algorithms for massive graphs. Springer, Boston, pp 393–420. https://doi.org/10.1007/978-1-4419-6045-0_13

    Book  Google Scholar 

  75. Zhao Y, Chen W, She Y, Wu Q, Peng Y, Fan X (2019) Visualizing dynamic network via sampled massive sequence view. In: Proceedings of the 12th international symposium on visual information communication and interaction, VINCI’2019, pp 32:1–32:2. ACM, New York. https://doi.org/10.1145/3356422.3356454. http://doi.acm.org/10.1145/3356422.3356454

  76. Zhao Y, She Y, Chen W, Lu Y, Xia J, Chen W, Liu J, Zhou F (2018) Eod edge sampling for visualizing dynamic network via massive sequence view. IEEE Access 6:53006–53018. https://doi.org/10.1109/ACCESS.2018.2870684

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq [grant number 456855/2014-9] and Coordenação de Aperfeicoamento de Pessoal de Nível Superior (CAPES PrInt - Grant Number 88881.311513/ 2018-01). The authors also thank SocioPatterns for making available some of the network data sets used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean R. Ponciano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponciano, J.R., Linhares, C.D.G., Rocha, L.E.C. et al. A streaming edge sampling method for network visualization. Knowl Inf Syst 63, 1717–1743 (2021). https://doi.org/10.1007/s10115-021-01571-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-021-01571-7

Keywords

Navigation