Skip to main content
Log in

Qualitative analysis of a Belousov–Zhabotinskii reaction model

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper deals with one kind of Belousov–Zhabotinskii reaction model. Linear stability is discussed for the spatially homogeneous problem firstly. Then we focus on the stationary problem with diffusion. Non-existence and existence of non-constant positive solutions are obtained by using implicit function theorem and Leray–Schauder degree theory, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Belousov, B. P.: An oscillating reaction and its mechanism, In Sborn. Referat. Radiat. Med. (Collection of Abstracts on Radiation Medicine), page 145. Medgiz, Moscow, 1959

    Google Scholar 

  2. Brown, K. J., Davidson, F. A.: Global bifurcation in the Brusselator system. Nonlinear Anal. TMA, 24, 1713–1725 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Capasso, V., Diekmann, O.: Mathematics Inspired by Biology, Lecture Notes in Mathematics, Vol. 1714, Springer, Berlin, CIME, Florence, 1999

    Google Scholar 

  4. Chen, X. F., Qi, Y. W., Wang, M. X.: A strongly coupled predator-prey system with non-monotonic functional response. Nonlinear Anal. TMA, 67, 1966–1979 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davidson, F. A., Rynne, B. P.: A priori bounds and global existence of solutions of the steady-state Sel’kov model. Proc. R. Soc. Edinburgh A 130, 507–516 (2000)

    Article  MATH  Google Scholar 

  6. Field, R. J., Burger, M.: Oscillations and Travelling Waves in Chemical Systems, Wiley, New York, 1985

    Google Scholar 

  7. Field, R. J., Noyes, R. M.: Oscillations in chemical systems. IV. limit cycle behaviour in a model of a real chemical reaction. J. Chem. Phys., 60, 1877–1884 (1974)

    Google Scholar 

  8. Li, J. J., Gao, W. J.: Analysis of a prey-predator model with disease in prey. Appl. Math. Comput., 217(8), 4024–4035 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Lieberman, G. M.: Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions. SIAM J. Math. Anal., 36(5), 1400–1406 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lou, Y., Martinez, S., Ni, W. M.: On 3×3 Lotka-Volterra competition systems with cross-diffusion. Discrete Contin. Dynamic Systems, 6(1), 175–190 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Lou, Y., Ni, W. M.: Diffusion, self-diffusion and cross-diffusion. J. Differential Equations, 131, 79–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lou, Y., Ni, W. M.: Diffusion vs cross-diffusion: an elliptic approach. J. Differential Equations, 154, 157–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murray, J. D.: Mathematical Biology, 2nd Edition, Springer, Berlin, 1993

    Book  MATH  Google Scholar 

  14. Nirenberg, L.: Topics in Nonlinear Functional Analysis, American Mathematical Society, Providence, RI, 2001

    Book  MATH  Google Scholar 

  15. Pang, P. Y. H., Wang, M. X.: Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc. R. Soc. Edinburgh A, 133(4), 919–942 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pang, P. Y. H., Wang, M. X.: Non-constant positive steady states of a predator-prey system with nonmonotonic functional response and diffusion. Proc. London Math. Soc., 88, 135–157 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pang, P. Y. H., Wang, M. X.: Strategy and stationary pattern in a three-species predator-prey model. J. Differential Equations, 200(2), 245–273 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, R.: Qualitative analysis of steady states to the Sel’kov model. J. Differential Equations, 241(2), 386–398 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng, R., Wang, M. X.: Positive steady state solutions of the Noyes–Field model for Belousov–Zhabotinskii reaction. Nonlinear Anal. TMA, 56(3), 451–464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng, R., Wang, M. X.: Pattern formation in the Brusselator system. J. Math. Anal. Appl., 309(1), 151–166 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng, R., Shi, J. P., Wang, M. X.: Station pattern of ratio-dependent food chain model with diffusion. SIAM J. Appl. Math., 67, 1479–1503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shi, H. P., Li, W. T., Lin, G.: Positive steady states of a diffusive predator-prey system with modified Holling–Tanner functional response. Nonlinear Anal. Real World Appl., 11(5), 3711–3721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, C. R., Ling, Z., Lin, Z. G.: Turing pattern formation in a predator-prey-mutualist system. Nonlinear Anal. Real World Appl., 12(6), 3224–3237 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Turing, A.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc., B(237), 37–72 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tyson, J. J.: The Belousov–Zhabotinskii Reaction, Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1976

    MATH  Google Scholar 

  26. Wang, M. X.: Non-constant positive steady states of the Sel’kov model. J. Differential Equations, 190(2), 600–620 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, M. X.: Nonlinear Equations of Parabolic Type (in Chinese), Science Press, Beijing, 1993

    Google Scholar 

  28. Wang, X. F.: Qualitative behavior of solutions of chemotactic diffusion systems: effects of motility and chemotaxis and dynamics. SIAM J. Math. Anal., 31(3), 535–560 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhabotinskii, A. M.: Periodic processes of the oxidation of malonic acid in solution (Study of the kinetics of Belousov-reaction). Biofizika, 9, 306–311 (1964)

    Google Scholar 

  30. Zhou, J., Kim, C. G., Shi, J. P.: Positive steady state solutions of a diffusive Leslie–Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete Contin. Dyn. Syst, 34(9), 3875–3899 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, J., Mu, C. L.: Pattern formation of a coupled two-cell Brusselator model. J. Math. Anal. Appl., 366(2), 679–693 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Supported by NSFC (Grant No. 11371113)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myint, A.Z., Li, L. & Wang, M.X. Qualitative analysis of a Belousov–Zhabotinskii reaction model. Acta. Math. Sin.-English Ser. 34, 975–991 (2018). https://doi.org/10.1007/s10114-017-7295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-017-7295-8

Keywords

MR(2010) Subject Classification

Navigation