Skip to main content
Log in

Resolvent splitting for sums of monotone operators with minimal lifting

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this work, we study fixed point algorithms for finding a zero in the sum of \(n\ge 2\) maximally monotone operators by using their resolvents. More precisely, we consider the class of such algorithms where each resolvent is evaluated only once per iteration. For any algorithm from this class, we show that the underlying fixed point operator is necessarily defined on a d-fold Cartesian product space with \(d\ge n-1\). Further, we show that this bound is unimprovable by providing a family of examples for which \(d=n-1\) is attained. This family includes the Douglas–Rachford algorithm as the special case when \(n=2\). Applications of the new family of algorithms in distributed decentralised optimisation and multi-block extensions of the alternation direction method of multipliers (ADMM) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Strictly speaking, (5) should be written as \(\textbf{y}=(B\otimes {{\,\textrm{Id}\,}})\textbf{z}+(L\otimes {{\,\textrm{Id}\,}})\textbf{x}\) where \(\otimes \) denotes the Kronecker product. In the special case when \(\mathcal {H}={\mathbb {R}}\), \(B\otimes {{\,\textrm{Id}\,}}=B\) and \(L\otimes {{\,\textrm{Id}\,}}=L\), and the two expressions coincide.

  2. We emphasise that the coefficient matrices \(T_z\) and \(T_x\) are constant and do not have any dependence on \(\textbf{z}\) or \(\textbf{x}\). The subscripts are merely labels to indicate which variables the coefficients belong to. An analogous remark applies to the coefficient matrices \(S_z\) and \(S_x\) in (7).

References

  1. Aragón Artacho, F. J., Bot, R. I. & Torregrosa-Belén, D.: A primal-dual splitting algorithm for composite monotone inclusions with minimal lifting. Numer. Algorithms arXiv:2202.09665v1 (2022) (in press)

  2. Aragón Artacho, F.J., Campoy, R., Tam, M.K.: Strengthened splitting methods for computing resolvents. Comput. Optim. Appl. 80, 549–585 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: CMS Books in Mathematics. In: Convex analysis and monotone operator theory in Hilbert spaces, 2nd edn. Springer, Berlin (2017)

    Chapter  MATH  Google Scholar 

  4. Bertsekas, D.P.: Convex optimization algorithms. Athena Scientific, Massachuesetts (2015)

    MATH  Google Scholar 

  5. Campoy, R.: A product space reformulation with reduced dimension for splitting algorithms. Comput. Optim. Appl. (2022). https://doi.org/10.1007/s10589-022-00395-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C., He, B., Ye, Y., Yuan, X.: The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math. Program. 155, 57–79 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Condat, L., Kitahara, D., Contreras, A. Hirabayashi, A.: Proximal splitting algorithms for convex optimization: a tour of recent advances, with new twists. SIAM Rev., to appear (2022)

  10. Combettes, P., Pesquet, J.-C.: Proximal Splitting Methods in Signal Processing. In: Bauschke, H.H., Burachik, R.S.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed-point algorithms for inverse problems in science and engineering, pp. 185–212. Springer-Verlag, New York (2011)

    Chapter  MATH  Google Scholar 

  11. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gabay, D.: Applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983)

    Google Scholar 

  13. Giselsson, P., Fält, M., Boyd, S.: Line search for averaged operator iteration. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 1015–1022, (2016)

  14. He, B., Yuan, X.: On the \(O(1/n)\) convergence rate of the Douglas-Rachford alternating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5(1), 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3), 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. Monteiro, R.D., Svaiter, B.F.: Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers. SIAM J. Optim. 23(1), 475–507 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pazy, A.: Asymptotic behavior of contractions in Hilbert space. Isr. J. Math. 9(2), 235–240 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peaceman, D.W., Rachford, H.H., Jr.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ryu, E.K.: Uniqueness of DRS as the \(2\)-operator resolvent-splitting and impossibility of \(3\)-operator resolvent-splitting. Math. Program. 182(1), 233–273 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ryu, E.K., Liu, Y., Yin, W.: Douglas-Rachford splitting and ADMM for pathological convex optimization. Comput. Optim. Appl. 74(3), 747–778 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observations. SIAM J. Optim. 21(1), 57–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wright, J., Ganesh, A., Rao, S.R., Peng, Y., Ma, Y.: Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. NIPS 58, 289–298 (2009)

    Google Scholar 

Download references

Acknowledgements

The work of YM was supported by the Wallenberg Al, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation. The project number is 305286. MKT is supported in part by Australian Research Council grant DE200100063. The authors would like to thank the anoymous referees for helpful comments, which included the improved PDHG formulation given in (29).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Tam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malitsky, Y., Tam, M.K. Resolvent splitting for sums of monotone operators with minimal lifting. Math. Program. 201, 231–262 (2023). https://doi.org/10.1007/s10107-022-01906-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-022-01906-4

Keywords

Mathematics Subject Classification

Navigation