Skip to main content

Advertisement

Log in

Bothrops atrox mice experimental envenoming treatment using light-emitting diode (led) as an adjunct therapy to conventional serum therapy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The use of anti-venom is one of the main control measures for snakebite envenoming when applied immediately after the snakebite. Systemic effects of the envenoming are usually reversed; however, neutralization of local effects is hardly achieved. The need for adjuvant therapies associated with serum therapy can improve the treatment for local effects of envenoming, with greater effectiveness in preventing or delaying the progression of damage, reducing the clinical signs and symptoms of victims of snakebites. The purpose of the study was to evaluate the photobiomodulation therapy using LED and/or dexamethasone associated with conventional serum therapy for the treatment of local damage caused by Bothrops atrox envenomation in a murine model. For this, experimental envenoming was carried out in the gastrocnemius muscle of male Swiss mice weighing 18 to 22 g divided into 8 groups of animals, distributed in groups non-treat, treated with anti-bothropic serum, dexamethasone, and LED, or the associated treatments, by intramuscular inoculation of 50 µg of venom or sterile PBS (control). After 30 min, the proposed treatments were administered alone or in combination. After 3 h, blood and muscle samples were collected for myotoxicity, cytotoxicity, histological analysis, and IL-1β assays. The evaluation of the treatment alone showed that serum therapy is not effective for the treatment of local damage and photobiomodulation demonstrated to be an effective therapy to reduce leukocyte infiltration, hemorrhage, and myotoxicity in experimental envenoming; dexamethasone proved to be a good resource for the treatment of the inflammatory process reducing the leukocyte infiltration. The association of serum therapy, LED, and dexamethasone was the best treatment to reduce the local effects caused by Bothrops atrox venom. All in all, the association of photobiomodulation therapy using LED with conventional serum therapy and the anti-inflammatory drug is the best treatment for reducing the undesirable local effects caused by snakebite accidents involving B. atrox species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data are available on request from the corresponding author. The data supporting this study’s findings are available on request from the corresponding author Juliana P. Zuliani.

References

  1. Bhaumik S, Jagadesh S, Lassi Z (2018) Quality of WHO guidelines on snakebite: the neglect continues. BMJ Glob Health 3(2):000783. https://doi.org/10.1136/bmjgh-2018-000783.

    Article  Google Scholar 

  2. The lancet (2017) Snake-bite envenoming: a priority neglected tropical disease. Lancet 390(10089):2. https://doi.org/10.1016/S0140-6736(17)31751-8

    Article  PubMed  Google Scholar 

  3. WHO (2022). Snakebite envenoming. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming. Accessed 15 June 2022.

  4. Gutiérrez JM, Calvete JJ, Abdulrazaq G, Habib Harrison RA, Williams DJ, Warrell DA (2017) Snakebite envenoming. Nat Rev Dis Primers 3:17063. https://doi.org/10.1038/nrdp.2017.63

    Article  PubMed  Google Scholar 

  5. The Lancet (2019) Snakebite-emerging from the shadows of neglect. Lancet 393(10187):2175. https://doi.org/10.1016/S0140-6736(19)31232-2

    Article  CAS  PubMed  Google Scholar 

  6. Basnyat B, Shilpakar O (2022) Snakebite envenoming: a hidden health crisis. Lancet Glob Health 10(3):311–312. https://doi.org/10.1016/S2214-109X(22)00029-8

    Article  Google Scholar 

  7. Brown N, Landon J (2010) Antivenom: the most cost-effective treatment in the world? Toxicon 55(7):1405–7. https://doi.org/10.1016/j.toxicon.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  8. Gutiérrez JM, León G, Lomonte B (2003) Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet 42(8):721–741. https://doi.org/10.2165/00003088-200342080-00002

    Article  PubMed  Google Scholar 

  9. Warrell DA (2012) Venomous bites, stings, and poisoning. Infect Dis Clin North Am. 26(2):207–23. https://doi.org/10.1016/j.idc.2012.03.006

    Article  PubMed  Google Scholar 

  10. Brasil, Ministério da saúde (2022) Acidentes ofídicos. https://www.gov.br/saude/pt-br/assuntos/saude-de-a-az/a/animaispeconhentos/acidentes-ofidicos. Accessed 26 June 2022.

  11. Gutiérrez JM, Chaves F, Bolaños R, Cerdas L, Rojans E, Arroyo O, Portilla E (1981) Neutralization of local effects of Bothrops asper venom by polyvalent antivenon. Toxicon 19(4):493–500. https://doi.org/10.1016/0041-0101(81)90007-6

    Article  PubMed  Google Scholar 

  12. Gutiérrez JM, Lomonte B (2013) Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 62:27–39

    Article  PubMed  Google Scholar 

  13. Farivar S, Malekshahabi T, Shiari R (2014) Biological effects of low level laser therapy. J Lasers Med Sci 5(2):58–62

    PubMed  PubMed Central  Google Scholar 

  14. Silva LMG, Zamuner LF, David AC, Santos AS, Carvalho PTC, Zamuner SR (2018) Photobiomodulation therapy on Bothrops snake venom induced local pathological effects: a systematic review. Toxicon 152:23–29. https://doi.org/10.1016/j.toxicon.2018.07.006

    Article  CAS  PubMed  Google Scholar 

  15. Campos GRS, De Moura KMB, Barbosa AM, Zamuner LF, Nadur-Andrade N, Dale CS, Gutiérrez JM, Chavantes MC, Zamuner SR (2018) Light emitting diode (LED) therapy reduce local pathological changes induced by Bothrops asper snake venom. Toxicon 15(152):95–102

    Article  Google Scholar 

  16. Nadur-Andrade N, Dale CS, Oliveira VR, Toniolo EF, Feliciano RD, da Silva JA, Zamuner SR Jr (2016) Analgesic effect of photobiomodulation on Bothrops Moojeni venom-induced hyperalgesia: a mechanism dependent on neuronal inhibition, cytokines and kinin receptors modulation. Plos Negl Trop Dis 10(10):0004998

    Article  Google Scholar 

  17. Nadur-andrade N, Barbosa AM, Carlos FP, Lima CJ, Cogo JC, Zamuner SR (2012) Effects of photobiostimulation on edema and hemorrhage induced by Bothrops moojeni venom. Lasers Med Sci 27:65–70

    Article  PubMed  Google Scholar 

  18. Pereira dos Reis V, Macedo Tavares MN, Alves Rego CM, Ferreira EAA, da Silva SS, Soares AM, Zamuner SR, Zuliani JP (2019) Light emitting diode (LED) photobiomodulation therapy on murine macrophage exposed to Bothropstoxin-I and Bothropstoxin-II myotoxins. Toxicon 172:45–52. https://doi.org/10.1016/j.toxicon.2019.10.243

    Article  CAS  PubMed  Google Scholar 

  19. Pereira Dos Reis V, Alves Rego CM, da Silva SS, Macedo Tavares MN, Bueno NC, Ferreira EFAA, Palochi MV, Soares AM, Zamuner SR, Zuliani JP (2021) Effect of light emitting diode photobiomodulation on murine macrophage function after Bothrops envenomation. Chemico-Biological Interact 33:109347. https://doi.org/10.1016/j.cbi.2020.109347

    Article  CAS  Google Scholar 

  20. Patrão-Neto FC, Tomaz MA, Strauch MA, Monteiro-Machado M, Rocha JR, Borges PA, Calil-Elias S, Melo PA (2013) Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of Bothrops venoms. Toxicon 69:55–64. https://doi.org/10.1016/j.toxicon.2013.01.023

    Article  CAS  PubMed  Google Scholar 

  21. Funasa Fundação nacional de saúde (2001) Ofidismo. Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. Brasília. https://www.gov.br/saude/pt-br/assuntos/saude-de-az/a/animaispeconhentos/acidentes-ofidicos. Accessed 26 June 2022.

  22. Correa-netto C, Teixeira-Araujo R, Aguiar AS, Melgarejo AR, De-Simone SG, Soares MR, Foguel D, Zingali RB (2010) Immunome and venome of Bothrops jararacussu: a proteomic approach to study the molecular immunology of snake toxins. Toxicon 55(7):1222–35. https://doi.org/10.1016/j.toxicon.2009.12.018

    Article  CAS  PubMed  Google Scholar 

  23. Zamuner SR, Da Cruz-Hofling MA, Corrado AP, Hyslop S, Rodrigues-Simioni, (2004) Comparison of the neurotoxic and myotoxic effects of Brazilian Bothrops venoms and their neutralization by commercial antivenom. Toxicon 44:259–271

    Article  CAS  PubMed  Google Scholar 

  24. Santos Barreto GN, De Oliveira SS, Dos Anjos IV, Chalkidis HM, Mourão RH, Moura-da-Silva AM, Sano-Martins IS, Gonçalves LR (2017) Experimental Bothrops atrox envenomation: efficacy of antivenom therapy and the combination of Bothrops antivenom with dexamethasone. Plos Negl Trop Dis 11(3):0005458. https://doi.org/10.1371/journal.pntd.0005458

    Article  CAS  Google Scholar 

  25. Doin-Silva R, Baranauskas V, Rodrigues-Simioni L, Cruz-Höfling DA, MA, (2009) The ability of low level laser therapy to prevent muscle tissue damage induced by snake venom. Photochem Photobiol 85(1):63–69

    Article  CAS  PubMed  Google Scholar 

  26. Barbosa AM, Villaverde AB, Sousa LG, Munin E, Fernandez CM, Cogo JC, Zamuner SR (2009) Effect of low-level laser therapy in the myonecrosis induced by Bothrops jararacussu snake venom. Photomed Laser Surg 27(4):591–597

    Article  PubMed  Google Scholar 

  27. Barbosa AM, Villaverde AB, Guimarães-sousa L, Soares AM, Zamuner SF, Cogo JC, Zamuner SR (2010) Low-level laser therapy decreases local effects induced by myotoxins isolated from Bothrops jararacussu snake venom. J Venom Anim Toxins incl Trop Dis 16(3):470–479

    Article  CAS  Google Scholar 

  28. Aranha de Sousa E, Bittencourt JA, Seabra de Oliveira NK, Correia HSV, Dos Santos LC, Lobato CP, Ribeiro JR, Pereira WL, Carvalho JC, Da Silva JO (2013) Effects of a low-level semiconductor gallium arsenide laser on local pathological alterations induced by Bothrops moojeni snake venom. Photochem Photobiol Sci 10:1895–1902. https://doi.org/10.1039/c3pp50036e

    Article  CAS  Google Scholar 

  29. Franco AT, Silva LM, Costa MS, Zamuner SF, Vieira RP (2016) De Fatima Pereira Teixeira C, Zamuner SR (2016) Effect of photobiomodulation on endothelial cell exposed to Bothrops jararaca venom. Lasers Med Sci 31(5):1017–1025. https://doi.org/10.1007/s10103-016-1941-8

    Article  PubMed  Google Scholar 

  30. Gordon JS, Wood CT, Luc JGY, Watson RA, Maynes EJ, Choi JH, Morris RJ, Massey HT, Throckmorton AL, Tchantchaleishvili V (2019) Clinical implications of LDH isoenzymes in hemolysis and continuous-flow left ventricular assist device-induced thrombosis. Artif Organs. https://doi.org/10.1111/aor.13565

    Article  PubMed  Google Scholar 

  31. Dos santos MC, Martins M, Boechat AL, Neto RPDS, Oliveira ME (1995) Serpentes de Interesse Médico da Amazônia: Biologia, Vevenos e Tratamento de Acidentes. Manaus: UA/SESU.

  32. Lopez-Castejon G, Brough D (2011) Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev 22(4):189–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors express their gratitude to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação Rondônia de Amparo ao Desenvolvimento das Ações Científicas e Tecnológicas e à Pesquisa do Estado de Rondônia (Fundação Rondônia—FAPERO) for the financial support. The authors thank the Program for Technological Development in Tools for Health-PDTIS-FIOCRUZ for the use of their facilities. This study was supported by grants from CNPq and PPSUS-MS-RO. Juliana Pavan Zuliani was a recipient of productivity grants 306672/2014–6, 306197/2017–0 and 311696/2021–0 from CNPq. Alex Ferreira e Ferreira was the beneficiary of CAPES (FAPERO) by Master’s fellowship. “This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.”

Author information

Authors and Affiliations

Authors

Contributions

A. A. F. F., V. P. R., S. R. Z., and J. P. Z. designed the study; A. A. F. F., V. P. R., H. M. S., J. R. E., N. M. N, S. N. S., R. S. S. D., C. M. A. R., M. N. M. T., and M. D. S. S. performed the experiments; A. M. S. performed and supervised the biochemical procedures; V. P. R., A. A. F. F., M. R., S. R. Z., and J. P. Z. collected analyzed the data and performed the figures; J. P. Z and A. M. S provided reagents; A. F. F., S. R. Z., and J. P. Z wrote the manuscript. All of the authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Stella Regina Zamuner or Juliana Pavan Zuliani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Andreimar Martins Soares, Stella Regina Zamuner and Juliana Pavan Zuliani were from Rede de Pesquisa em Toxinologia Básica e Aplicada, REDTOX.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira e Ferreira, A.A., dos Reis, V.P., Santana, H.M. et al. Bothrops atrox mice experimental envenoming treatment using light-emitting diode (led) as an adjunct therapy to conventional serum therapy. Lasers Med Sci 38, 53 (2023). https://doi.org/10.1007/s10103-023-03710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-023-03710-8

Keywords

Navigation