Skip to main content
Log in

Comparison of the efficacy and safety of anti-VEGF monotherapy versus anti-VEGF therapy combined with subthreshold micropulse laser therapy for diabetic macular edema

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose of this study is to compare the efficacy and safety of 577-nm subthreshold micropulse laser (SML) and intravitreal bevacizumab injection (IVB) combined therapy with IVB monotherapy in the treatment of diabetic macular edema (DME). This retrospective study included 80 eyes of 80 patients; 40 eyes were treated with IVB monotherapy, and 40 eyes were treated with SML-IVB combined therapy. The mean number of required IVB injections and changes of best corrected visual acuity (BCVA) and central macular thickness (CMT) values were compared between the groups. The mean age of the patients was 60.19±7.43 years. The baseline characteristics of the patients were similar between the groups. In the SML-IVB combined group, the mean number of required SML sessions was 2.1±0.81. The mean number of required IVB injections was 4.38±0.81 in the SML-IVB combined group and 5.65±1.51 in the IVB monotherapy group (p<0.05). The increase of the BCVA was significant in the SML-IVB combined group at the 3rd, 6th, 9th, and 12th months; however, in the IVB monotherapy group, it was only significant at the 3rd month (p<0.05). The mean CMT values of the 3rd, 9th, and 12th months were similar between the groups (p>0.05); only at the 6th month was it significantly lower in the SML-IVB combined group (p<0.05). When compared with baseline, the decrease of the CMT was statistically significant in both groups at the 3rd, 6th, 9th, and 12th months (p<0.05). In this study, a significant benefit of adding SML to IVB therapy was found with less IVB need, although a very significant increase in BCVA could not be achieved. The use of SML-IVB combined treatment may be an effective and safe alternative for DME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Anti-VEGF:

Anti-vascular endothelial growth factor

SML:

Subthreshold micropulse laser

IVB:

Intravitreal bevacizumab injection

DME:

Diabetic macular edema

BCVA:

Best corrected visual acuity

CMT:

Central macular thickness

DM:

Diabetes mellitus

CLP:

Conventional laser photocoagulation

ETDRS:

Early Treatment Diabetic Retinopathy Study

RPE:

Retinal pigment epithelium

CNV:

Choroidal neovascularization

HSP:

Heat shock protein

PEDF:

Pigment epithelium-derived factor

MMPs:

Matrix metalloproteinases

CSC:

Central serous chorioretinopathy

SD-OCT:

Spectral-domain optical coherence tomography

FA:

Fluorescein angiography

PRP:

Panretinal photocoagulation

logMAR:

Logarithms of the minimum angle of resolution

DC:

Duty cycle

HbA1C:

Glycated hemoglobin

SD:

Standard deviation

IAIs:

Intravitreal aflibercept injections

References

  1. Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis 2:17. https://doi.org/10.1186/s40662-015-0026-2

    Article  Google Scholar 

  2. Early Treatment Diabetic Retinopathy Study Research Group (1985) Photocoagulation for diabetic macular edema: early treatment diabetic retinopathy report number 1. Arch Ophthalmol 103:1796–1806

    Article  Google Scholar 

  3. Dorin G (2004) Evolution of retinal laser therapy: minimum intensity photocoagulation (MIP). Can the laser heal the retina without harming it? Semin Ophthalmol 19:62–68. https://doi.org/10.1080/08820530490884173

    Article  PubMed  Google Scholar 

  4. Schatz H, Madeira D, McDonald HR, Johnson RN (1991) Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol 109:1549–1551. https://doi.org/10.1001/archopht.1991.01080110085041

    Article  PubMed  CAS  Google Scholar 

  5. Hudson C, Flanagan JG, Turner GS, Chen HC, Young LB, McLeod D (1998) Influence of laser photocoagulation for clinically significant diabetic macular oedema (DMO) on short-wavelength and conventional automated perimetry. Diabetologia 41:1283–1292. https://doi.org/10.1007/s001250051066

    Article  PubMed  CAS  Google Scholar 

  6. Lewis H, Schachat AP, Haimann MH, Haller JA, Quinlan P, von Fricken MA et al (1990) Choroidal neovascularization after laser photocoagulation for diabetic macular edema. Ophthalmology 97:503–510. https://doi.org/10.1016/s0161-6420(90)32574-5

    Article  PubMed  CAS  Google Scholar 

  7. Guyer DR, D’Amico DJ, Smith CW (1992) Subretinal fibrosis after laser photocoagulation for diabetic macular edema. Am J Ophthalmol 113:652–656. https://doi.org/10.1016/s0002-9394(14)74789-0

    Article  PubMed  CAS  Google Scholar 

  8. Miller JW, Le Couter J, Strauss EC et al (2013) Vascular endothelial growth factor in intraocular vascular disease. Ophthalmology 120(1):106–114. https://doi.org/10.1016/j.ophtha.2012.07.038

    Article  PubMed  Google Scholar 

  9. Li Z, Song Y, Chen X et al (2015) Biological modulation of mouse RPE cells in response to subthreshold diode micropulse laser treatment. Cell Biochem Biophys 73:545–552. https://doi.org/10.1007/s12013-015-0675-8

    Article  PubMed  CAS  Google Scholar 

  10. Brader HS, Young LH (2016) Subthreshold diode micropulse laser: a review. Semin Ophthalmol 31:30–39. https://doi.org/10.3109/08820538.2015.1114837

    Article  PubMed  Google Scholar 

  11. Vujosevic S, Martini F, Convento E, Longhin E, Kotsafti O, Parrozzani R et al (2013) Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues. Curr Med Chem 20:3267–3271. https://doi.org/10.2174/09298673113209990030

    Article  PubMed  CAS  Google Scholar 

  12. Yadav NK, Jayadev C, Rajendran A, Nagpal M (2014) Recent developments in retinal lasers and delivery systems. Indian J Ophthalmol 62:50–54. https://doi.org/10.4103/0301-4738.126179

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mainster MA (1986) Wavelength selection in macular photocoagulation. Ophthalmology 93:952–958. https://doi.org/10.1016/s0161-6420(86)33637-6.14

    Article  PubMed  CAS  Google Scholar 

  14. Vujosevic S, Martini F, Longhin E et al (2015) Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center involving diabetic macular edema: morphological and functional safety. Retina. 35:1594–1603. https://doi.org/10.1097/IAE.0000000000000521

    Article  PubMed  Google Scholar 

  15. Chang DB, Luttrull JK (2020) Comparison of subthreshold 577 and 810 nm micropulse laser effects on heat-shock protein activation kinetics: implications for treatment efficacy and safety. Trans Vis Sci Tech 9(5):23. https://doi.org/10.1167/tvst.9.5.23

    Article  Google Scholar 

  16. Friberg TR, Karatza EC (1997) The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser. Ophthalmology 104(12):2030–2038. https://doi.org/10.1016/S0161-6420(97)30061-X

    Article  PubMed  CAS  Google Scholar 

  17. Kwon YH, Lee DK, Kwon OW (2014) The short-term efficacy of subthreshold micropulse yellow (577 nm) laser photocoagulation for diabetic macular edema. Korean J Ophthalmol 28:379–385. https://doi.org/10.3341/kjo.2014.28.5.379

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luttrull JK, Sinclair SH (2014) Safety of transfoveal subthreshold diode micropulse laser for fovea-involving diabetic macular edema in eyes with good vısual acuıty. Retina 34:2010–2020. https://doi.org/10.1097/IAE.0000000000000177

    Article  PubMed  Google Scholar 

  19. Vujosevic S, Bottega E, Casciano M et al (2010) Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina 30:908–916. https://doi.org/10.1097/IAE.0b013e3181c96986

    Article  PubMed  Google Scholar 

  20. Venkatesh P, Ramanjulu R, Azad R et al (2011) Subthreshold micropulse diode laser and double frequency neodymium: YAG laser in treatment of diabetic macular edema: a prospective, randomized study using multifocal electroretinography. Photomed Laser Surg 29:727–733. https://doi.org/10.1089/pho.2010.2830

    Article  PubMed  CAS  Google Scholar 

  21. Mansouri A, Sampat KM, Malik KJ, Steiner JN, Glaser BM (2014) Efficacy of subthreshold micropulse laser in the treatment of diabetic macular edema is influenced by pre-treatment central foveal thickness. Eye (Lond) 28:1418–1424. https://doi.org/10.1038/eye.2014.264

    Article  Google Scholar 

  22. Moisseiev E, Abbassi S, Thinda S, Yoon J, Yiu G, Morse LS (2018) Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema. Eur J Ophthalmol 1:68–73. https://doi.org/10.5301/ejo.5001000

    Article  Google Scholar 

  23. Do DV, Nguyen QD, Khwaja AA, Channa R, Sepah YJ, Sophie R et al (2013) Ranibizumab for edema of the macula in diabetes study: 3-year outcomes and the need for prolonged frequent treatment. JAMA Ophthalmol 131:139–145. https://doi.org/10.1001/2013.jamaophthalmol.91

    Article  PubMed  CAS  Google Scholar 

  24. Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E (2018) Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev 10:CD007419. https://doi.org/10.1002/14651858.CD007419.pub6

    Article  PubMed  Google Scholar 

  25. Gupta A, Sun JK, Silva PS (2018) Complications of intravitreous ınjections in patients with diabetes. Semin Ophthalmol 33:42–50. https://doi.org/10.1080/08820538.2017.1353811

    Article  PubMed  Google Scholar 

  26. Dossarps D, Bron AM, Koehrer P, Aho-Glele LS, Creuzot-Garcher C, FRCR net (FRenCh Retina specialists net) (2015) Endophthalmitis after intravitreal ınjections: Incidence, presentation, management, and visual outcome. Am J Ophthalmol 160:17–25. https://doi.org/10.1016/j.ajo.2015.04.013

    Article  PubMed  Google Scholar 

  27. Blinder KJ, Dugel PU, Chen S et al (2017) Anti-VEGF treatment of diabetic macular edema in clinical practice: effectiveness and patterns of use (ECHO Study Report 1). Clin Ophthalmol 11:393–401. https://doi.org/10.2147/OPTH.S128509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mitchell P, Bandello F, Schmidt-Erfurth U et al (2011) The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118(4):615–625. https://doi.org/10.1016/j.ophtha.2011.01.031

    Article  PubMed  Google Scholar 

  29. Kanar HS, Arsan A, Altun A, Aki SF, Hacisalihoglu A (2020) Can subthreshold micropulse yellow laser treatment change the anti-vascular endothelial growth factor algorithm in diabetic macular edema? A randomized clinical trial. Indian J Ophthalmol 68:145–151. https://doi.org/10.4103/ijo.IJO_350_19

    Article  PubMed  Google Scholar 

  30. Lavinsky D, Cardillo JA, Melo LA Jr et al (2011) Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci 52:4314–4323. https://doi.org/10.1167/iovs.10-6828

    Article  PubMed  Google Scholar 

  31. Citirik M (2019) The impact of central foveal thickness on the efficacy of subthreshold micropulse yellow laser photocoagulation in diabetic macular edema. Lasers Med Sci 34(5):907–912. https://doi.org/10.1007/s10103-018-2672-9

    Article  PubMed  Google Scholar 

  32. Luttrull JK, Spink CJ (2006) Serial optical coherence tomography of subthreshold diode laser micropulse photocoagulation for diabetic macular edema. Ophthalmic Surg Lasers Imaging 37:370–377. https://doi.org/10.3928/15428877-20060901-03

    Article  PubMed  Google Scholar 

  33. Figueira J, Khan J, Nunes S et al (2009) Prospective randomized controlled trial comparing subthreshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol 93:1341–1344. https://doi.org/10.1136/bjo.2008.146712

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meltem Guzin Altınel.

Ethics declarations

Ethical approval

All procedures performed in experiments involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Declaration of Helsinki. The study was approved by the Scientific Research Commission of the Bahcesehir University.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altınel, M.G., Acikalin, B., Alis, M.G. et al. Comparison of the efficacy and safety of anti-VEGF monotherapy versus anti-VEGF therapy combined with subthreshold micropulse laser therapy for diabetic macular edema. Lasers Med Sci 36, 1545–1553 (2021). https://doi.org/10.1007/s10103-021-03306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03306-0

Keywords

Navigation