Skip to main content

Advertisement

Log in

Reconditioning of ceramic orthodontic brackets with an Er,Cr:YSGG laser

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

It is now known that erbium lasers are effective in composite removal, but there is minimal information about their efficacy on recycling of ceramic brackets. This study, therefore, aimed to determine the percentage of remaining adhesive on the base and the shear bond strength of debonded ceramic brackets after being reconditioned by an Er,Cr:YSGG (erbium, chromium: yttrium–scandium–gallium–garnet) laser. Thirty premolars were divided into three groups, then bonded with mechanical retention ceramic brackets according to the bracket base conditions: (1) new brackets; (2) debonded brackets cleaned of adhesive with the Er,Cr:YSGG laser at 3.5 W; and (3) debonded brackets cleaned of adhesive with the Er,Cr:YSGG laser at 4 W. Before bonding, the percentage of remaining adhesive on the bases of reconditioned brackets was calculated by using stereomicroscopic images through an image processing software. The brackets were then tested in shear mode in a universal testing machine and the adhesive remnant index scores were determined. The percentage of remaining adhesive on the bases of brackets that were cleaned by the Er,Cr:YSGG laser at 4 W (3.1 %) was significantly lower than that of the 3.5-W laser group (5.9 %) (p = 0.03). No significant difference was found in bond strengths between the new and the reconditioned brackets (p = 0.19). The frequency of bond failure at the enamel-adhesive interface was lower in the laser-reconditioned brackets when compared to the new brackets. The application of Er,Cr:YSGG laser was efficient in removing adhesive from bases of debonded ceramic brackets because it produced comparable bond strengths to new brackets while reducing the risk of enamel damage during debonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Artun J (1997) A post-treatment evaluation of multibonded ceramic brackets in orthodontics. Eur J Orthod 19(2):219–228

    Article  PubMed  CAS  Google Scholar 

  2. Joseph VP, Rossouw E (1990) The shear bond strengths of stainless steel and ceramic brackets used with chemically and light-activated composite resins. Am J Orthod Dentofacial Orthop 97(2):121–125

    Article  PubMed  CAS  Google Scholar 

  3. Forsberg CM, Hagberg C (1992) Shear bond strength of ceramic brackets with chemical or mechanical retention. Br J Orthod 19(3):183–189

    PubMed  CAS  Google Scholar 

  4. Viazis AD, Cavanaugh G, Bevis RR (1990) Bond strength of ceramic brackets under shear stress: an in vitro report. Am J Orthod Dentofacial Orthop 98(3):214–221

    Article  PubMed  CAS  Google Scholar 

  5. Wang WN, Meng CL, Tarng TH (1997) Bond strength: a comparison between chemical coated and mechanical interlock bases of ceramic and metal brackets. Am J Orthod Dentofacial Orthop 111(4):374–381

    Article  PubMed  CAS  Google Scholar 

  6. Basudan AM, Al-Emran SE (2001) The effects of in-office reconditioning on the morphology of slots and bases of stainless steel brackets and on the shear/peel bond strength. J Orthod 28(3):231–236

    Article  PubMed  CAS  Google Scholar 

  7. Buchman DJ (1980) Effects of recycling on metallic direct-bond orthodontic brackets. Am J Orthod 77(6):654–668

    Article  PubMed  CAS  Google Scholar 

  8. Buchwald A (1989) A three-cycle in vivo evaluation of reconditioned direct-bonding brackets. Am J Orthod Dentofacial Orthop 95(4):352–354

    Article  PubMed  CAS  Google Scholar 

  9. Reddy YN, Varma DP, Kumar AG, Kumar KS, Shetty SV (2011) Effect of thermal recycling of metal brackets on shear and tensile bond strength. J Contemp Dent Pract 12(4):287–294

    Article  PubMed  Google Scholar 

  10. Tavares SW, Consani S, Nouer DF, Magnani MB, Nouer PR, Martins LM (2006) Shear bond strength of new and recycled brackets to enamel. Braz Dent J 17(1):44–48

    Article  PubMed  Google Scholar 

  11. Wheeler JJ, Ackerman RJ Jr (1983) Bond strength of thermally recycled metal brackets. Am J Orthod 83(3):181–186

    Article  PubMed  CAS  Google Scholar 

  12. Wright WL, Powers JM (1985) In vitro tensile bond strength of reconditioned brackets. Am J Orthod 87(3):247–252

    Article  PubMed  CAS  Google Scholar 

  13. Sonis AL (1996) Air abrasion of failed bonded metal brackets: a study of shear bond strength and surface characteristics as determined by scanning electron microscopy. Am J Orthod Dentofacial Orthop 110(1):96–98

    Article  PubMed  CAS  Google Scholar 

  14. Lew KK, Chew CL, Lee KW (1991) A comparison of shear bond strengths between new and recycled ceramic brackets. Eur J Orthod 13(4):306–310

    Article  PubMed  CAS  Google Scholar 

  15. Harris AM, Joseph VP, Rossouw PE (1992) Shear peel bond strengths of esthetic orthodontic brackets. Am J Orthod Dentofacial Orthop 102(3):215–219

    Article  PubMed  CAS  Google Scholar 

  16. Chung CH, Friedman SD, Mante FK (2002) Shear bond strength of rebonded mechanically retentive ceramic brackets. Am J Orthod Dentofacial Orthop 122(3):282–287

    Article  PubMed  Google Scholar 

  17. Gaffey PG, Major PW, Glover K, Grace M, Koehler JR (1995) Shear/peel bond strength of repositioned ceramic brackets. Angle Orthod 65(5):351–357

    PubMed  CAS  Google Scholar 

  18. Toroglu MS, Yaylali S (2008) Effects of sandblasting and silica coating on the bond strength of rebonded mechanically retentive ceramic brackets. Am J Orthod Dentofacial Orthop 134(2):181e181–181e187. doi:10.1016/j.ajodo.2008.05.012

    Google Scholar 

  19. Correa-Afonso AM, Palma-Dibb RG, Pecora JD (2010) Composite filling removal with erbium:yttrium-aluminum-garnet laser: morphological analyses. Lasers Med Sci 25(1):1–7. doi:10.1007/s10103-008-0581-z

    Article  PubMed  Google Scholar 

  20. Hibst R, Keller U (1991) Removal of dental filling materials by Er: YAG laser radiation. Proc SPIE 1424:120–126

    Google Scholar 

  21. Correa-Afonso AM, Pecora JD, Palma-Dibb RG (2008) Influence of pulse repetition rate on temperature rise and working time during composite filling removal with the Er:YAG laser. Photomed Laser Surg 26(3):221–225. doi:10.1089/pho.2007.2120

    Article  PubMed  Google Scholar 

  22. Kimyai S, Mohammadi N, Navimipour EJ, Rikhtegaran S (2010) Comparison of the effect of three mechanical surface treatments on the repair bond strength of a laboratory composite. Photomed Laser Surg 28(Suppl 2):S25–S30. doi:10.1089/pho.2009.2598

    PubMed  CAS  Google Scholar 

  23. Ahrari F, Basafa M, Fekrazad R, Mokarram M, Akbari M (2012) The efficacy of Er, Cr:YSGG laser in reconditioning of metallic orthodontic brackets. Photomed Laser Surg 30(1):41–46. doi:10.1089/pho.2011.3088

    Article  PubMed  CAS  Google Scholar 

  24. Ishida K, Endo T, Shinkai K, Katoh Y (2011) Shear bond strength of rebonded brackets after removal of adhesives with Er, Cr:YSGG laser. Odontology 99(2):129–134. doi:10.1007/s10266-011-0012-7

    Article  PubMed  Google Scholar 

  25. Ahrari F, Heravi F, Fekrazad R, Farzanegan F, Nakhaei S (2012) Does ultra-pulse CO(2) laser reduce the risk of enamel damage during debonding of ceramic brackets? Lasers Med Sci 27(3):567–574. doi:10.1007/s10103-011-0933-y

    Google Scholar 

  26. Artun J, Bergland S (1984) Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 85(4):333–340

    Article  PubMed  CAS  Google Scholar 

  27. Dumore T, Fried D (2000) Selective ablation of orthodontic composite by using sub-microsecond IR laser pulses with optical feedback. Lasers Surg Med 27(2):103–110. doi:10.1002/1096-9101(2000)

    Article  PubMed  CAS  Google Scholar 

  28. Louie TM, Jones RS, Sarma AV, Fried D (2005) Selective removal of composite sealants with near-ultraviolet laser pulses of nanosecond duration. J Biomed Opt 10(1):14001. doi:10.1117/1.1854676

    Article  PubMed  Google Scholar 

  29. Chan KH, Fried D (2011) Selective removal of dental composite using a rapidly scanned carbon dioxide laser. Proc Soc Photo Opt Instrum Eng 7884:78840R78841–78840R78845. doi:10.1117/12.878890

    Google Scholar 

  30. Braun A, Wehry RJ, Brede O, Dehn C, Frentzen M, Schelle F (2012) Heat generation caused by ablation of restorative materials with an ultrashort pulse laser (USPL) system. Lasers Med Sci 27(2):297–303. doi:10.1007/s10103-010-0875-9

    Google Scholar 

  31. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthodont 2:171–178

    Google Scholar 

  32. Bowen RL, Rodriguez MS (1962) Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc 64:378–387

    PubMed  CAS  Google Scholar 

  33. Retief DH (1974) Failure at the dental adhesive-etched enamel interface. J Oral Rehabil 1(3):265–284

    Article  PubMed  CAS  Google Scholar 

  34. Bishara SE, Fehr DE (1993) Comparisons of the effectiveness of pliers with narrow and wide blades in debonding ceramic brackets. Am J Orthod Dentofacial Orthop 103(3):253–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the research chancellor of Mashhad University of Medical Sciences for the financial support of this research (grant number 88784).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzaneh Ahrari or Reza Fekrazad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahrari, F., Fekrazad, R., Kalhori, K.A.M. et al. Reconditioning of ceramic orthodontic brackets with an Er,Cr:YSGG laser. Lasers Med Sci 28, 223–228 (2013). https://doi.org/10.1007/s10103-012-1093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1093-4

Keywords

Navigation