Skip to main content

Advertisement

Log in

Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Molecular tools have shown an added value in the diagnosis of infectious diseases, in particular for those caused by fastidious intracellular microorganisms, or in patients receiving antibiotics before sampling. If 16S rDNA amplification had been gradually implemented in microbiology laboratories, specific real-time polymerase chain reaction (PCR) would have permitted an increase in the sensitivity of molecular methods and a reduction of contamination. Herein, we report our experience in the diagnosis of infectious diseases over two years, during which 32,948 clinical samples from 18,056 patients were received from France and abroad. Among these samples, 81,476 PCRs were performed, of which 1,192 were positive. Molecular techniques detected intracellular microorganisms in 31.3 % of respiratory samples, 27.8 % of endocarditis samples and 51.9 % of adenitis samples. Excluding intracellular bacteria, 25 % of the positive samples in this series were sterile in culture. Conventional broad-range PCR permitted the identification of fastidious and anaerobic microorganisms, but specific real-time PCR showed a significant superiority in the diagnosis of osteoarticular infections, in particular for those caused by Kingella kingae and Staphylococcus aureus, and for endocarditis diagnosis, specifically when Streptococcus gallolyticus and Staphylococcus aureus were involved. The sensitivity of conventional broad-range PCR was 62.9 % concerning overall diagnoses for which both techniques had been performed. These findings should lead microbiologists to focus on targeted specific real-time PCR regarding the clinical syndrome. Finally, syndrome-driven diagnosis, which consists of testing a panel of microorganisms commonly involved for each syndrome, permitted the establishment of 31 incidental diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mullis K, Faloona FA, Scharf SJ, Saiki RK, Horn GT, Erlich H (1992) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Biotechnol Ser 17

  2. Mackay IM, Arden KE, Nitsche A (2002) Real-time PCR in virology. Nucleic Acids Res 30:1292–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bell AS, Ranford-Cartwright LC (2002) Real-time quantitative PCR in parasitology. Trends Parasitol 18:337–342

    Article  CAS  PubMed  Google Scholar 

  4. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JDC, Wengenack NL, Rosenblatt JE, Cockerill FR 3rd, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19:165–256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brouqui P, Raoult D (2001) Endocarditis due to rare and fastidious bacteria. Clin Microbiol Rev 14:177–207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Fenollar F, Raoult D (2004) Molecular genetic methods for the diagnosis of fastidious microorganisms. APMIS 112:785–807

    Article  CAS  PubMed  Google Scholar 

  7. Fenollar F, Raoult D (2007) Molecular diagnosis of bloodstream infections caused by non-cultivable bacteria. Int J Antimicrob Agents 30:S7–S15

    Article  CAS  PubMed  Google Scholar 

  8. Houpikian P, Raoult D (2005) Blood culture-negative endocarditis in a reference center: etiologic diagnosis of 348 cases. Medicine (Baltimore) 84:162–173

    Article  Google Scholar 

  9. Fenollar F, Lévy PY, Raoult D (2008) Usefulness of broad-range PCR for the diagnosis of osteoarticular infections. Curr Opin Rheumatol 20:463–470

    Article  CAS  PubMed  Google Scholar 

  10. Rovery C, Greub G, Lepidi H, Casalta JP, Habib G, Collart F, Raoult D (2005) PCR detection of bacteria on cardiac valves of patients with treated bacterial endocarditis. J Clin Microbiol 43:163–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sontakke S, Cadenas MB, Maggi RG, Diniz PPV, Breitschwerdt EB (2009) Use of broad range 16S rDNA PCR in clinical microbiology. J Microbiol Methods 76:217–225

    Article  CAS  PubMed  Google Scholar 

  12. Casalta JP, Gouriet F, Thuny F, Bothelo E, Lepidi H, Fournier PE, Habib G, Guidon C, Collard F, Raoult D (2009) Standardisation et prise en charge multidisciplinaire des endocardites. Stratégie du CHU de Marseille. Antibiotiques 11:81–89

    Article  Google Scholar 

  13. Goldenberger D, Künzli A, Vogt P, Zbinden R, Altwegg M (1997) Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing. J Clin Microbiol 35:2733–2739

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Millar BC, Xu J, Moore JE (2002) Risk assessment models and contamination management: implications for broad-range ribosomal DNA PCR as a diagnostic tool in medical bacteriology. J Clin Microbiol 40:1575–1580

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fenollar F, Roux V, Stein A, Drancourt M, Raoult D (2006) Analysis of 525 samples to determine the usefulness of PCR amplification and sequencing of the 16S rRNA gene for diagnosis of bone and joint infections. J Clin Microbiol 44:1018–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Fihman V, Hannouche D, Bousson V, Bardin T, Lioté F, Raskine L, Riahi J, Sanson-Le Pors MJ, Berçot B (2007) Improved diagnosis specificity in bone and joint infections using molecular techniques. J Infect 55:510–517

    Article  CAS  PubMed  Google Scholar 

  18. Cohen-Bacrie S, Ninove L, Nougairède A, Charrel R, Richet H, Minodier P, Badiaga S, Noël G, La Scola B, de Lamballerie X, Drancourt M, Raoult D (2011) Revolutionizing clinical microbiology laboratory organization in hospitals with in situ point-of-care. PLoS One 6:e22403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lecouvet F, Irenge L, Vandercam B, Nzeusseu A, Hamels S, Gala JL (2004) The etiologic diagnosis of infectious discitis is improved by amplification-based DNA analysis. Arthritis Rheum 50:2985–2994

    Article  CAS  PubMed  Google Scholar 

  20. Gouriet F, Raoult D (2009) Diagnostic microbiologique: du diagnostic par étiologie au diagnostic par syndrome. Antibiotiques 11:37–48

    Article  Google Scholar 

  21. Al Masalma M, Armougom F, Scheld WM, Dufour H, Roche PH, Drancourt M, Raoult D (2009) The expansion of the microbiological spectrum of brain abscesses with use of multiple 16S ribosomal DNA sequencing. Clin Infect Dis 48:1169–1178

    Article  CAS  PubMed  Google Scholar 

  22. Parola P, Colson P, Dubourg G, Million M, Charrel R, Minodier P, Raoult D (2011) Letter to the editor. Group A streptococcal infections during the seasonal influenza outbreak 2010/11 in South East England. Euro Surveill 16(11). pii: 19816

  23. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152

    Google Scholar 

  24. Lévy PY, Fenollar F (2012) The role of molecular diagnostics in implant-associated bone and joint infection. Clin Microbiol Infect 18:1168–1175

    Article  PubMed  Google Scholar 

  25. Yagupsky P, Dagan R, Howard CW, Einhorn M, Kassis I, Simu A (1992) High prevalence of Kingella kingae in joint fluid from children with septic arthritis revealed by the BACTEC blood culture system. J Clin Microbiol 30:1278–1281

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Ghodbane R, Raoult D, Drancourt M (2014) Dramatic reduction of culture time of Mycobacterium tuberculosis. Sci Rep 4:4236

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mishra AK, Fournier PE (2013) The role of Streptococcus intermedius in brain abscess. Eur J Clin Microbiol Infect Dis 32:477–483

    Article  CAS  PubMed  Google Scholar 

  28. Angelakis E, Roux V, Raoult D, Rolain JM (2009) Real-time PCR strategy and detection of bacterial agents of lymphadenitis. Eur J Clin Microbiol Infect Dis 28:1363–1368

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by IHU Méditerranée Infection.

Conflict of interest

None of the authors have a conflict of interest.

Ethical approval

Permission from the local ethics committee of the IFR48 (Marseille, France) was obtained under agreement 09-022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Raoult.

Additional information

Anne-Sophie Morel and Grégory Dubourg contributed equally to this work.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Online Resource 1

(PDF 326 kb)

Online Resource 2

(PDF 363 kb)

Online Resource 3

(PDF 16 kb)

Online Resource 4

(PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morel, AS., Dubourg, G., Prudent, E. et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 34, 561–570 (2015). https://doi.org/10.1007/s10096-014-2263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2263-z

Keywords

Navigation