Skip to main content

Advertisement

Log in

Raman spectroscopic analysis of the clonal and horizontal spread of CTX-M-15-producing Klebsiella pneumoniae in a neonatal intensive care unit

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Nosocomial outbreaks of extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae are an increasing concern in neonatal intensive care units (NICUs). We describe an outbreak of ESBL-producing K. pneumoniae that lasted 5 months and affected 23 neonates in our NICU. Proton pump inhibitor and extended-spectrum cephalosporin exposure were significantly associated with the risk of ESBL-producing K. pneumoniae colonisation and/or infection. Thirty isolates recovered from clinical, screening and environmental samples in the NICU were studied by means of Raman spectroscopy, pulsed-field gel electrophoresis and repetitive extragenic palindromic polymerase chain reaction (rep-PCR). The Raman clustering was in good agreement with the results of the other two molecular methods. Fourteen isolates belonged to the Raman clone 1 and 16 to the Raman clone 3. Molecular analysis showed that all the strains expressed SHV-1 chromosomal resistance, plasmid-encoded TEM-1 and CTX-M-15 β-lactamases. Incompatibility groups of plasmid content identified by PCR-based replicon typing indicated that resistance dissemination was due to the clonal spread of K. pneumoniae and horizontal CTX-M-15 gene transfer between the two clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Velasco C, Rodríguez-Baño J, García L, Díaz P, Lupión C, Durán L, Pascual A (2009) Eradication of an extensive outbreak in a neonatal unit caused by two sequential Klebsiella pneumoniae clones harbouring related plasmids encoding an extended-spectrum beta-lactamase. J Hosp Infect 73(2):157–163

    Article  PubMed  CAS  Google Scholar 

  2. González RAC, Gil GF, Solórzano RM, Cruz GJ, Puig PJ, Suárez SM, Nieves BB (2011) Outbreak of multiresistant and extended spectrum beta-lactamase producing Klebsiella pneumoniae in a high risk neonatal unit. Rev Chilena Infectol 28(1):28–34

    Google Scholar 

  3. Boukadida J, Salem N, Hannachi N, Monastiri K, Snoussi N (2002) Genotypic exploration of a hospital neonatal outbreak due to Klebsiella pneumoniae producing extended-spectrum-betalactamase. Arch Pediatr 9(5):463–468

    Article  PubMed  CAS  Google Scholar 

  4. de Oliveira Garcia D, Doi Y, Szabo D, Adams-Haduch JM, Vaz TM, Leite D, Padoveze MC, Freire MP, Silveira FP, Paterson DL (2008) Multiclonal outbreak of Klebsiella pneumoniae producing extended-spectrum beta-lactamase CTX-M-2 and novel variant CTX-M-59 in a neonatal intensive care unit in Brazil. Antimicrob Agents Chemother 52(5):1790–1793

    Article  PubMed  Google Scholar 

  5. Cassettari VC, da Silveira IR, Dropa M, Lincopan N, Mamizuka EM, Matté MH, Matté GR, Menezes PR (2009) Risk factors for colonisation of newborn infants during an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in an intermediate-risk neonatal unit. J Hosp Infect 71(4):340–347

    Article  PubMed  CAS  Google Scholar 

  6. Miranda G, Castro N, Leaños B, Valenzuela A, Garza-Ramos U, Rojas T, Solórzano F, Chihu L, Silva J (2004) Clonal and horizontal dissemination of Klebsiella pneumoniae expressing SHV-5 extended-spectrum beta-lactamase in a Mexican pediatric hospital. J Clin Microbiol 42(1):30–35

    Article  PubMed  CAS  Google Scholar 

  7. Drieux L, Brossier F, Sougakoff W, Jarlier V (2008) Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14(Suppl 1):90–103

    Article  PubMed  CAS  Google Scholar 

  8. Clinical and Laboratory Standards Institute (CLSI) (2011) Performance standards for antimicrobial susceptibility testing, 21st informational supplement. M100-S21, vol. 31, no. 1. CLSI, Wayne, PA

  9. Willemse-Erix DF, Scholtes-Timmerman MJ, Jachtenberg JW, van Leeuwen WB, Horst-Kreft D, Bakker Schut TC, Deurenberg RH, Puppels GJ, van Belkum A, Vos MC, Maquelin K (2009) Optical fingerprinting in bacterial epidemiology: Raman spectroscopy as a real-time typing method. J Clin Microbiol 47(3):652–659

    Article  PubMed  Google Scholar 

  10. Bingen-Bidois M, Clermont O, Bonacorsi S, Terki M, Brahimi N, Loukil C, Barraud D, Bingen E (2002) Phylogenetic analysis and prevalence of urosepsis strains of Escherichia coli bearing pathogenicity island-like domains. Infect Immun 70(6):3216–3226

    Article  PubMed  CAS  Google Scholar 

  11. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239

    PubMed  CAS  Google Scholar 

  12. Bonacorsi S, Bidet P, Mahjoub F, Mariani-Kurkdjian P, Ait-Ifrane S, Courroux C, Bingen E (2009) Semi-automated rep-PCR for rapid differentiation of major clonal groups of Escherichia coli meningitis strains. Int J Med Microbiol 299(6):402–409

    Article  PubMed  CAS  Google Scholar 

  13. Aubert D, Poirel L, Chevalier J, Leotard S, Pages JM, Nordmann P (2001) Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45(6):1615–1620

    Article  PubMed  CAS  Google Scholar 

  14. Brasme L, Nordmann P, Fidel F, Lartigue MF, Bajolet O, Poirel L, Forte D, Vernet-Garnier V, Madoux J, Reveil JC, Alba-Sauviat C, Baudinat I, Bineau P, Bouquigny-Saison C, Eloy C, Lafaurie C, Siméon D, Verquin JP, Noël F, Strady C, De Champs C (2007) Incidence of class A extended-spectrum beta-lactamases in Champagne-Ardenne (France): a 1 year prospective study. J Antimicrob Chemother 60(5):956–964

    Article  PubMed  CAS  Google Scholar 

  15. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65(3):490–495

    Article  PubMed  CAS  Google Scholar 

  16. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63(3):219–228

    Article  PubMed  CAS  Google Scholar 

  17. Lebessi E, Dellagrammaticas H, Tassios PT, Tzouvelekis LS, Ioannidou S, Foustoukou M, Legakis NJ (2002) Extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit in the high-prevalence area of Athens, Greece. J Clin Microbiol 40(3):799–804

    Article  PubMed  CAS  Google Scholar 

  18. Graham PL 3rd, Begg MD, Larson E, Della-Latta P, Allen A, Saiman L (2006) Risk factors for late onset gram-negative sepsis in low birth weight infants hospitalized in the neonatal intensive care unit. Pediatr Infect Dis J 25(2):113–117

    Article  PubMed  Google Scholar 

  19. Levy SS, Mello MJ, Gusmão-Filho FA, Correia JB (2010) Colonisation by extended-spectrum beta-lactamase-producing Klebsiella spp. in a paediatric intensive care unit. J Hosp Infect 76(1):66–69

    Article  PubMed  CAS  Google Scholar 

  20. Willemse-Erix D, Bakker-Schut T, Slagboom-Bax F, Jachtenberg JW, Lemmens-den Toom N, Papagiannitsis CC, Kuntaman K, Puppels G, van Belkum A, Severin JA, Goessens W, Maquelin K (2012) Rapid typing of extended-spectrum β-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolates by use of SpectraCell RA. J Clin Microbiol 50(4):1370–1375

    Article  PubMed  Google Scholar 

  21. Chuang YC, Wang JT, Chen ML, Chen YC (2010) Comparison of an automated repetitive-sequence-based PCR microbial typing system with pulsed-field gel electrophoresis for molecular typing of vancomycin-resistant Enterococcus faecium. J Clin Microbiol 48(8):2897–2901

    Article  PubMed  CAS  Google Scholar 

  22. Healy M, Huong J, Bittner T, Lising M, Frye S, Raza S, Schrock R, Manry J, Renwick A, Nieto R, Woods C, Versalovic J, Lupski JR (2005) Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol 43(1):199–207

    Article  PubMed  CAS  Google Scholar 

  23. Willemse-Erix HF, Jachtenberg J, Barutçi H, Puppels GJ, van Belkum A, Vos MC, Maquelin K (2010) Proof of principle for successful characterization of methicillin-resistant coagulase-negative staphylococci isolated from skin by use of Raman spectroscopy and pulsed-field gel electrophoresis. J Clin Microbiol 48(3):736–740

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bingen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guyot, K., Biran, V., Doit, C. et al. Raman spectroscopic analysis of the clonal and horizontal spread of CTX-M-15-producing Klebsiella pneumoniae in a neonatal intensive care unit. Eur J Clin Microbiol Infect Dis 31, 2827–2834 (2012). https://doi.org/10.1007/s10096-012-1636-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1636-4

Keywords

Navigation