Skip to main content

Advertisement

Log in

Zidovudine (AZT) has a bactericidal effect on enterobacteria and induces genetic modifications in resistant strains

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The spread of multiresistant bacteria increases the need for new antibiotics. The observation that some nucleoside analogues have antibacterial activity led us to further investigate the antimicrobial activity and resistance of zidovudine (AZT). We determined the minimum inhibition concentration (MIC), studied time–kill curves, induced resistant bacteria and sequenced the gene for thymidine kinase. We demonstrate that AZT has a bactericidal effect on some enterobacteria. However, AZT could induce resistance in Escherichia coli. These resistances were associated with various modifications in the thymidine kinase gene. In particular, we observed the presence in this gene of an insertion sequence (IS) similar to IS911 of Shigella dysenteriae in two resistant clones. No cross-resistance with classical antibiotics in strains with modified thymidine kinase gene was observed. Finally, an additive or synergistic activity between AZT and the two aminoglycoside antibiotics amikacin and gentamicin was observed. We demonstrate the bactericidal activity of AZT and show synergy in association with gentamicin. Genetic modifications in resistant bacteria were identified. Our results indicate that AZT could potentially be added in the treatment of infections with enterobacteria or represent the basis for the development of derivatives with better activity and inducing less resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rossolini GM, Mantengoli E (2008) Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin Microbiol Infect 14(Suppl 6):2–8

    Article  PubMed  Google Scholar 

  2. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602

    Article  PubMed  CAS  Google Scholar 

  3. Payne DJ (2008) Microbiology. Desperately seeking new antibiotics. Science 321:1644–1645

    Article  PubMed  CAS  Google Scholar 

  4. Taubes G (2008) The bacteria fight back. Science 321:356–361

    Article  PubMed  CAS  Google Scholar 

  5. Rolston KV (2009) New antimicrobial agents for the treatment of bacterial infections in cancer patients. Hematol Oncol 27:107–114

    Article  PubMed  CAS  Google Scholar 

  6. Stryjewski ME, Corey GR (2009) New treatments for methicillin-resistant Staphylococcus aureus. Curr Opin Crit Care 15:403–412

    Article  PubMed  Google Scholar 

  7. Olson MW, Ruzin A, Feyfant E, Rush TS 3rd, O’Connell J, Bradford PA (2006) Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Antimicrob Agents Chemother 50:2156–2166

    Article  PubMed  CAS  Google Scholar 

  8. Sandrini MP, Clausen AR, On SL, Aarestrup FM, Munch-Petersen B, Piskur J (2007) Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner. J Antimicrob Chemother 60:510–520

    Article  PubMed  CAS  Google Scholar 

  9. Sandrini MP, Shannon O, Clausen AR, Björck L, Piskur J (2007) Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria. Antimicrob Agents Chemother 51:2726–2732

    Article  PubMed  CAS  Google Scholar 

  10. Elwell LP, Ferone R, Freeman GA, Fyfe JA, Hill JA, Ray PH, Richards CA, Singer SC, Knick VB, Rideout JL, Zimmerman TP (1987) Antibacterial activity and mechanism of action of 3′-azido-3′-deoxythymidine (BW A509U). Antimicrob Agents Chemother 31:274–280

    PubMed  CAS  Google Scholar 

  11. Olivero OA (2007) Mechanisms of genotoxicity of nucleoside reverse transcriptase inhibitors. Environ Mol Mutagen 48:215–223

    Article  PubMed  CAS  Google Scholar 

  12. Clinical and Laboratory Standards Institute (CLSI) (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically—eighth edition; approved standard M7-A8. CLSI, Wayne, PA, USA

  13. Pankey G, Ashcraft D, Patel N (2005) In vitro synergy of daptomycin plus rifampin against Enterococcus faecium resistant to both linezolid and vancomycin. Antimicrob Agents Chemother 49:5166–5168

    Article  PubMed  CAS  Google Scholar 

  14. French Society for Microbiology (2010) Les recommandations du Comité de l’Antibiogramme de la Société Française de Microbiologie (CASFM)

  15. Casado JL, Valdezate S, Calderon C, Navas E, Frutos B, Guerrero A, Martinez-Beltran J (1999) Zidovudine therapy protects against Salmonella bacteremia recurrence in human immunodeficiency virus-infected patients. J Infect Dis 179:1553–1556

    Article  PubMed  CAS  Google Scholar 

  16. Miller K, O’Neill AJ, Chopra I (2002) Response of Escherichia coli hypermutators to selection pressure with antimicrobial agents from different classes. J Antimicrob Chemother 49:925–934

    Article  PubMed  CAS  Google Scholar 

  17. O’Neill AJ, Cove JH, Chopra I (2001) Mutation frequencies for resistance to fusidic acid and rifampicin in Staphylococcus aureus. J Antimicrob Chemother 47:647–650

    Article  PubMed  Google Scholar 

  18. Sifaoui F, Kitzis MD, Gutmann L (1996) In vitro selection of one-step mutants of Streptococcus pneumoniae resistant to different oral beta-lactam antibiotics is associated with alterations of PBP2x. Antimicrob Agents Chemother 40:152–156

    PubMed  CAS  Google Scholar 

  19. Lewin CS, Allen RA, Amyes SG (1990) Antibacterial activity of fluoroquinolones in combination with zidovudine. J Med Microbiol 33:127–131

    Article  PubMed  CAS  Google Scholar 

  20. Lewin CS, Watt B, Paton R, Amyes SG (1990) Isolation of zidovudine resistant Escherichia coli from AIDS patients. FEMS Microbiol Lett 58:141–143

    PubMed  CAS  Google Scholar 

  21. Lewin CS, Allen RA, Amyes SG (1990) Mechanisms of zidovudine resistance in bacteria. J Med Microbiol 33:235–238

    Article  PubMed  CAS  Google Scholar 

  22. Rousseau P, Loot C, Turlan C, Nolivos S, Chandler M (2008) Bias between the left and right inverted repeats during IS911 targeted insertion. J Bacteriol 190:6111–6118

    Article  PubMed  CAS  Google Scholar 

  23. Mulvey MR, Bryce E, Boyd DA, Ofner-Agostini M, Land AM, Simor AE, Paton S (2005) Molecular characterization of cefoxitin-resistant Escherichia coli from Canadian hospitals. Antimicrob Agents Chemother 49:358–365

    Article  PubMed  CAS  Google Scholar 

  24. Child S, Montaner J, Tsoukas C, Fanning M, Le T, Wall RA, Ruedy J (1991) Canadian multicenter azidothymidine trial: AZT pharmacokinetics. J Acquir Immune Defic Syndr 4:865–870

    PubMed  CAS  Google Scholar 

  25. Morse GD, Olson J, Portmore A, Taylor C, Plank C, Reichman RC (1989) Pharmacokinetics of orally administered zidovudine among patients with hemophilia and asymptomatic human immunodeficiency virus (HIV) infection. Antiviral Res 11:57–65

    Article  PubMed  CAS  Google Scholar 

  26. Pizzo PA, Eddy J, Falloon J, Balis FM, Murphy RF, Moss H, Wolters P, Brouwers P, Jarosinski P, Rubin M, Broder S, Yarchoan R, Brunetti A, Maha M, Nusinoff-Lehrman S, Poplack DG (1988) Effect of continuous intravenous infusion of zidovudine (AZT) in children with symptomatic HIV infection. N Engl J Med 319:889–896

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank Mr. Dominique Schneider and Mr. Anthony Zoropogui for their knowledge on the insertion sequences. L.P.J. received funding from Oddrun Mjålands Stiftelse For Kreftforskning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Doléans-Jordheim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doléans-Jordheim, A., Bergeron, E., Bereyziat, F. et al. Zidovudine (AZT) has a bactericidal effect on enterobacteria and induces genetic modifications in resistant strains. Eur J Clin Microbiol Infect Dis 30, 1249–1256 (2011). https://doi.org/10.1007/s10096-011-1220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1220-3

Keywords

Navigation