Skip to main content

Advertisement

Log in

Abstract

Molecular diagnostics in tuberculosis has enabled rapid detection of Mycobacterium tuberculosis complex in clinical specimens, identification of mycobacterial species, detection of drug resistance, and typing for epidemiological investigation. In the laboratory diagnosis of tuberculosis, the nucleic acid amplification (NAA) test is rapid and specific but not as sensitive as culture of mycobacteria. The primary determinant of successful NAA testing for tuberculosis depends on the shedding of mycobacterial DNA in secretions from caseating granulomas and its dissemination into sterile body fluids or tissue biopsies. In multibacillary diseases with a high mycobacterial load, a positive Ziehl–Neelsen smear with a positive NAA test is diagnostic of active tuberculosis, whereas a positive Ziehl–Neelsen smear with a negative NAA test in the absence of inhibitors would indicate nontuberculous mycobacterial disease. The role of the NAA test is more important in paucibacillary diseases with low mycobacterial loads. The presence of polymerase chain reaction (PCR) inhibitors, however, especially in extrapulmonary specimens, may produce false-negative results. Although this problem can be overcome to some extent by extra extraction steps, the additional processing invariably leads to the loss of mycobacterial DNA. To circumvent this problem, a brief culture augmentation step is carried out before the NAA test is performed, which can enhance the mycobacterial load while concomitantly diluting inhibitors, thereby maintaining the sensitivity of the test without excessively increasing turnaround time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362:887–899

    Article  PubMed  Google Scholar 

  2. Pfyffer GE, Brown-Elliott BA, Wallace RJ Jr (2003) Mycobacterium: General characteristics, isolation, and staining procedures. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds) Manual of clinical microbiology, 8th edn. Washington, District of Columbia, pp 532–559

  3. Angeby KA, Werngren J, Toro JC, Hedstrom G, Petrini B, Hoffner SE (2003) Evaluation of the BacT/ALERT 3D system for recovery and drug susceptibility testing of Mycobacterium tuberculosis. Clin Microbiol Infect 9:1148–1152

    Article  PubMed  CAS  Google Scholar 

  4. Hanscheid T, Monteiro C, Cristino JM, Lito LM, Salgado MJ (2005) Growth of Mycobacterium tuberculosis in conventional BacT/ALERT FA blood culture bottles allows reliable diagnosis of mycobacteremia. J Clin Microbiol 43:890–891

    Article  PubMed  CAS  Google Scholar 

  5. Diraa O, Fdany K, Boudouma M, Elmdaghri N, Benbachir M (2003) Assessment of the mycobacteria growth indicator tube for the bacteriological diagnosis of tuberculosis. Int J Tuberc Lung Dis 7:1010–1012

    PubMed  CAS  Google Scholar 

  6. Tortoli E, Benedetti M, Fontanelli A, Simonetti MT (2002) Evaluation of automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to four major antituberculous drugs: comparison with the radiometric BACTEC 460TB method and the agar plate method of proportion. J Clin Microbiol 40:607–610

    Article  PubMed  CAS  Google Scholar 

  7. Flanagan PG, Williams R, Paull A (1999) Comparison of two automated systems for the isolation of mycobacteria from clinical specimens. Eur J Clin Microbiol Infect Dis 18:912–914

    Article  PubMed  CAS  Google Scholar 

  8. Savic B, Sjobring U, Alugupalli S, Larsson L, Miorner H (1992) Evaluation of polymerase chain reaction, tuberculostearic acid analysis, and direct microscopy for the detection of Mycobacterium tuberculosis in sputum. J Infect Dis 166:1177–1180

    PubMed  CAS  Google Scholar 

  9. Okuda Y, Maekura R, Hirotani A, Kitada S, Yoshimura K, Hiraga T, Yamamoto Y, Itou M, Ogura T, Ogihara T (2004) Rapid serodiagnosis of active pulmonary Mycobacterium tuberculosis by analysis of results from multiple antigen-specific tests. J Clin Microbiol 42:1136–1141

    Article  PubMed  Google Scholar 

  10. Tessema TA, Bjune G, Assefa G, Svenson S, Hamasur B, Bjorvatn B (2002) Clinical and radiological features in relation to urinary excretion of lipoarabinomannan in Ethiopian tuberculosis patients. Scand J Infect Dis 34:167–171

    PubMed  CAS  Google Scholar 

  11. Woods GL (2001) Molecular techniques in mycobacterial detection. Arch Pathol Lab Med 125:122–126

    PubMed  CAS  Google Scholar 

  12. American Thoracic Society Workshop (1997) Rapid diagnostic tests for tuberculosis: what is the appropriate use? Am J Respir Crit Care Med 155:1804–1814

    Google Scholar 

  13. Gamboa F, Fernandez G, Padilla E, Manterola JM, Lonca J, Cardona PJ, Matas L, Ausina V (1998) Comparative evaluation of initial and new versions of the Gen-Probe Amplified Mycobacterium tuberculosis Direct Test for direct detection of Mycobacterium tuberculosis in respiratory and non-respiratory specimens. J Clin Microbiol 36:684–689

    PubMed  CAS  Google Scholar 

  14. Reischl U, Lehn N, Wolf H, Naumann L (1998) Clinical evaluation of the automated COBAS AMPLICOR MTB assay for testing respiratory and nonrespiratory specimens. J Clin Microbiol 36:2853–2860

    PubMed  CAS  Google Scholar 

  15. Gaudreau C, Sala E, Ruiz-Serrano MJ, Petersen H, Oostendorp LA, Burkardt H (2001) Multicenter study of a commercial, automated polymerase chain reaction system for the rapid detection of Mycobacterium tuberculosis in respiratory specimens in routine clinical practice. Eur J Clin Microbiol Infect Dis 20:724–731

    PubMed  Google Scholar 

  16. Levidiotou S, Vrioni G, Galanakis E, Gesouli E, Pappa C, Stefanou D (2003) Four-year experience of use of the Cobas Amplicor system for rapid detection of Mycobacterium tuberculosis complex in respiratory and nonrespiratory specimens in Greece. Eur J Clin Microbiol Infect Dis 22:349–356

    Article  PubMed  CAS  Google Scholar 

  17. Fegou E, Jelastopulu E, Sevdali M, Anastassiou ED, Dimitracopoulos G, Spiliopoulou I (2005) Sensitivity of the Cobas Amplicor system for detection of Mycobacterium tuberculosis in respiratory and extrapulmonary specimens. Clin Microbiol Infect 11:593–596

    Article  PubMed  CAS  Google Scholar 

  18. Burggraf S, Reischl U, Malik N, Bollwein M, Naumann L, Olgemoller B (2005) Comparison of an internally controlled, large-volume LightCycler assay for detection of Mycobacterium tuberculosis in clinical samples with the COBAS AMPLICOR assay. J Clin Microbiol 43:1564–1569

    Article  PubMed  CAS  Google Scholar 

  19. Cohen RA, Muzaffar S, Schwartz D, Bashir S, Luke S, McGartland LP, Kaul K (1998) Diagnosis of pulmonary tuberculosis using PCR assays on sputum collected within 24 hours of hospital admission. Am J Respir Crit Care Med 157:156–161

    PubMed  CAS  Google Scholar 

  20. Catanzaro A, Perry S, Clarridge JE, Dunbar S, Goodnight-White S, LoBue PA, Peter C, Pfyffer GE, Sierra MF, Weber R, Woods G, Matthews G, Jonas V, Smith K, Della-Latta P (2000) The role of clinical suspicion in evaluating a new diagnostic test for active tuberculosis: results of a multicenter prospective trial. JAMA 283:639–645

    Article  PubMed  CAS  Google Scholar 

  21. Huang TS, Liu YC, Lin HH, Huang WK, Cheng DL (1996) Comparison of the roche AMPLICOR MYCOBACTERIUM assay and Digene SHARP Signal System with in-house PCR and culture for detection of Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol 34:3092–3096

    PubMed  CAS  Google Scholar 

  22. Yuen KY, Yam WC, Wong LP, Seto WH (1997) Comparison of two automated DNA amplification systems with a manual one-tube nested PCR assay for diagnosis of pulmonary tuberculosis. J Clin Microbiol 35:1385–1389

    PubMed  CAS  Google Scholar 

  23. Wang SX, Tay L (1999) Evaluation of three nucleic acid amplification methods for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol 37:1932–1934

    PubMed  CAS  Google Scholar 

  24. Gomez-Pastrana D, Torronteras R, Caro P, Anguita ML, Lopez-Barrio AM, Andres A, Navarro J (2001) Comparison of Amplicor, in-house polymerase chain reaction, and conventional culture for the diagnosis of tuberculosis in children. Clin Infect Dis 32:17–22

    Article  PubMed  CAS  Google Scholar 

  25. Kang EY, Choi JA, Seo BK, Oh YW, Lee CK, Shim JJ (2002) Utility of polymerase chain reaction for detecting Mycobacterium tuberculosis in specimens from percutaneous transthoracic needle aspiration. Radiology 225:205–209

    PubMed  CAS  Google Scholar 

  26. Kidane D, Olobo JO, Habte A, Negesse Y, Aseffa A, Abate G, Yassin MA, Bereda K, Harboe M (2002) Identification of the causative organism of tuberculous lymphadenitis in Ethiopia by PCR. J Clin Microbiol 40:4230–4234

    Article  PubMed  CAS  Google Scholar 

  27. Bruijnesteijn Van Coppenraet ES, Lindeboom JA, Prins JM, Peeters MF, Claas EC, Kuijper EJ (2004) Real-time PCR assay using fine-needle aspirates and tissue biopsy specimens for rapid diagnosis of mycobacterial lymphadenitis in children. J Clin Microbiol 42:2644–2650

    Article  PubMed  CAS  Google Scholar 

  28. Querol JM, Minguez J, Garcia-Sanchez E, Farga MA, Gimeno C, Garcia-de-Lomas J (1995) Rapid diagnosis of pleural tuberculosis by polymerase chain reaction. Am J Respir Crit Care Med 152:1977–1981

    PubMed  CAS  Google Scholar 

  29. Mitarai S, Shishido H, Kurashima A, Tamura A, Nagai H (2000) Comparative study of Amplicor Mycobacterium PCR and conventional methods for the diagnosis of pleuritis caused by mycobacterial infection. Int J Tuberc Lung Dis 4:871–876

    PubMed  CAS  Google Scholar 

  30. Villegas MV, Labrada LA, Saravia NG (2000) Evaluation of polymerase chain reaction, adenosine deaminase, and interferon-gamma in pleural fluid for the differential diagnosis of pleural tuberculosis. Chest 118:1355–1364

    Article  PubMed  CAS  Google Scholar 

  31. Nagesh BS, Sehgal S, Jindal SK, Arora SK (2001) Evaluation of polymerase chain reaction for detection of Mycobacterium tuberculosis in pleural fluid. Chest 119:1737–1741

    Article  PubMed  CAS  Google Scholar 

  32. Pai M, Flores LL, Hubbard A, Riley LW, Colford JM Jr (2004) Nucleic acid amplification tests in the diagnosis of tuberculous pleuritis: a systematic review and meta-analysis. BMC Infect Dis 4:6

    Article  PubMed  Google Scholar 

  33. Hasaneen NA, Zaki ME, Shalaby HM, El-Morsi AS (2003) Polymerase chain reaction of pleural biopsy is a rapid and sensitive method for the diagnosis of tuberculous pleural effusion. Chest 124:2105–2111

    Article  PubMed  CAS  Google Scholar 

  34. Lang AM, Feris-Iglesias J, Pena C, Sanchez JF, Stockman L, Rys P, Roberts GD, Henry NK, Persing DH, Cockerill FE 3rd (1998) Clinical evaluation of the gen-probe amplified direct test for detection of Mycobacterium tuberculosis complex organisms in cerebrospinal fluid. J Clin Microbiol 36:2191–2194

    PubMed  CAS  Google Scholar 

  35. Desai MM, Pal RB (2002) Polymerase chain reaction for the rapid diagnosis of tuberculous meningitis. Indian J Med Sci 56:546–552

    PubMed  CAS  Google Scholar 

  36. Jonsson B, Ridell M (2003) The Cobas Amplicor MTB test for detection of Mycobacterium tuberculosis complex from respiratory and non-respiratory clinical specimens. Scand J Infect Dis 35:372–377

    Article  PubMed  Google Scholar 

  37. Pai M, Flores LL, Pai N, Hubbard A, Riley LW, Colford JM Jr (2003) Diagnostic accuracy of nucleic acid amplification tests for tuberculous meningitis: a systematic review and meta-analysis. Lancet Infect Dis 3:633–643

    Article  PubMed  CAS  Google Scholar 

  38. Diaz ML, Herrera T, Lopez-Vidal Y, Calva JJ, Hernandez R, Palacios GR, Sada E (1996) Polymerase chain reaction for the detection of Mycobacterium tuberculosis DNA in tissue and assessment of its utility in the diagnosis of hepatic granulomas. J Lab Clin Med 127:359–363

    Article  PubMed  CAS  Google Scholar 

  39. Alcantara-Payawal DE, Matsumura M, Shiratori Y, Okudaira T, Gonzalez R, Lopez RA, Sollano JD, Omata M (1997) Direct detection of Mycobacterium tuberculosis using polymerase chain reaction assay among patients with hepatic granuloma. J Hepatol 27:620–627

    Article  PubMed  CAS  Google Scholar 

  40. Moussa OM, Eraky I, El-Far MA, Osman HG, Ghoneim MA (2000) Rapid diagnosis of genitourinary tuberculosis by polymerase chain reaction and non-radioactive DNA hybridization. J Urol 164:584–588

    Article  PubMed  CAS  Google Scholar 

  41. Kafwabulula M, Ahmed K, Nagatake T, Gotoh J, Mitarai S, Oizumi K, Zumla A (2002) Evaluation of PCR-based methods for the diagnosis of tuberculosis by identification of mycobacterial DNA in urine samples. Int J Tuberc Lung Dis 6:732–737

    PubMed  CAS  Google Scholar 

  42. Arora SK, Kumar B, Sehgal S (2000) Development of a polymerase chain reaction dot-blotting system for detecting cutaneous tuberculosis. Br J Dermatol 142:72–76

    Article  PubMed  CAS  Google Scholar 

  43. Quiros E, Bettinardi A, Quiros A, Piedrola G, Maroto MC (2000) Detection of mycobacterial DNA in papulonecrotic tuberculid lesions by polymerase chain reaction. J Clin Lab Anal 14:133–135

    Article  PubMed  CAS  Google Scholar 

  44. Schluger NW, Condos R, Lewis S, Rom WN (1994) Amplification of DNA of Mycobacterium tuberculosis from peripheral blood of patients with pulmonary tuberculosis. Lancet 344:232–233

    Article  PubMed  CAS  Google Scholar 

  45. Folgueira L, Delgado R, Palenque E, Aguado JM, Noriega AR (1996) Rapid diagnosis of Mycobacterium tuberculosis bacteremia by PCR. J Clin Microbiol 34:512–515

    PubMed  CAS  Google Scholar 

  46. Honore S, Vincensini JP, Hocqueloux L, Noguera ME, Farge D, Lagrange P, Herrmann JL (2001) Diagnostic value of a nested polymerase chain reaction assay on peripheral blood mononuclear cells from patients with pulmonary and extra-pulmonary tuberculosis. Int J Tuberc Lung Dis 5:754–762

    PubMed  CAS  Google Scholar 

  47. Lombard EH, Victor T, Jordaan A, van Helden PD (1994) The detection of Mycobacterium tuberculosis in bone marrow aspirate using the polymerase chain reaction. Tuber Lung Dis 75:65–69

    Article  PubMed  CAS  Google Scholar 

  48. Akcan Y, Tuncer S, Hayran M, Sungur A, Unal S (1997) PCR on disseminated tuberculosis in bone marrow and liver biopsy specimens: correlation to histopathological and clinical diagnosis. Scand J Infect Dis 29:271–274

    Article  PubMed  CAS  Google Scholar 

  49. Sumi MG, Mathai A, Sheela R, Radhakrishnan NS, Radhakrishnan VV, Indhulekshmy R, Mundayoor S (2001) Diagnostic utility of polymerase chain reaction and immunohistochemical techniques for the laboratory diagnosis of intracranial tuberculoma. Clin Neuropathol 20:176–180

    PubMed  CAS  Google Scholar 

  50. Park do Y, Kim JY, Choi KU, Lee JS, Lee CH, Sol MY, Suh KS (2003) Comparison of polymerase chain reaction with histopathologic features for diagnosis of tuberculosis in formalin-fixed, paraffin-embedded histologic specimens. Arch Pathol Lab Med 127:326–330

    PubMed  Google Scholar 

  51. Pfyffer GE, Kissling P, Jahn EM, Welscher HM, Salfinger M, Weber R (1996) Diagnostic performance of amplified Mycobacterium tuberculosis direct test with cerebrospinal fluid, other nonrespiratory, and respiratory specimens. J Clin Microbiol 34:834–841

    PubMed  CAS  Google Scholar 

  52. Bergmann JS, Keating WE, Woods GL (2000) Clinical evaluation of the BDProbeTec ET system for rapid detection of Mycobacterium tuberculosis. J Clin Microbiol 38:863–865

    PubMed  CAS  Google Scholar 

  53. Maugein J, Fourche J, Vacher S, Grimond C, Bebear C (2002) Evaluation of the BDProbeTec ET DTB assay for direct detection of Mycobacterium tuberculosis complex from clinical samples. Diagn Microbiol Infect Dis 44:151–155

    Article  PubMed  CAS  Google Scholar 

  54. Rusch-Gerdes S, Richter E (2004) Clinical evaluation of the semiautomated BDProbeTec ET system for the detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. Diagn Microbiol Infect Dis 48:265–270

    Article  PubMed  CAS  Google Scholar 

  55. Piersimoni C, Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, Bornigia S (2002) Performance assessment of two commercial amplification assays for direct detection of Mycobacterium tuberculosis complex from respiratory and extrapulmonary specimens. J Clin Microbiol 40:4138–4142

    Article  PubMed  CAS  Google Scholar 

  56. Jesus de la Calle I, Jesus de la Calle MA, Rodriguez-Iglesias M (2003) Evaluation of the BDProbeTec ET system as screening tool in the direct detection of Mycobacterium tuberculosis complex in respiratory specimens. Diagn Microbiol Infect Dis 47:573–578

    Article  PubMed  CAS  Google Scholar 

  57. Johansen IS, Lundgren B, Tabak F, Petrini B, Hosoglu S, Saltoglu N, Thomsen VO (2004) Improved sensitivity of nucleic acid amplification for rapid diagnosis of tuberculous meningitis. J Clin Microbiol 42:3036–3040

    Article  PubMed  CAS  Google Scholar 

  58. Dowdy DW, Maters A, Parrish N, Beyrer C, Dorman SE (2003) Cost-effectiveness analysis of the gen-probe amplified Mycobacterium tuberculosis direct test as used routinely on smear-positive respiratory specimens. J Clin Microbiol 41:948–953

    Article  PubMed  Google Scholar 

  59. Boddinghaus B, Wichelhaus TA, Brade V, Bittner T (2001) Removal of PCR inhibitors by silica membranes: evaluating the amplicor Mycobacterium tuberculosis kit. J Clin Microbiol 39:3750–3752

    Article  PubMed  CAS  Google Scholar 

  60. Fernstrom MC, Dahlgren L, Ranby M, Forsgren A, Petrini B (2003) Increased sensitivity of Mycobacterium tuberculosis Cobas Amplicor PCR following brief incubation of tissue samples on Lowenstein–Jensen substrate. APMIS 111:1114–1116

    Article  PubMed  Google Scholar 

  61. Noordhoek GT, van Embden JD, Kolk AH (1996) Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories. J Clin Microbiol 34:2522–2525

    PubMed  CAS  Google Scholar 

  62. Yuen KY, Chan KS, Chan CM, Ho PL, Ng MH (1997) Monitoring the therapy of pulmonary tuberculosis by nested polymerase chain reaction assay. J Infect 34:29–33

    Article  PubMed  CAS  Google Scholar 

  63. Cheng VC, Yam WC, Hung IF, Woo PC, Lau SK, Tang BS, Yuen KY (2004) Clinical evaluation of the polymerase chain reaction for the rapid diagnosis of tuberculosis. J Clin Pathol 57:281–285

    Article  PubMed  CAS  Google Scholar 

  64. Woods GL (2002) The mycobacteriology laboratory and new diagnostic techniques. Infect Dis Clin North Am 16:127–144

    Article  PubMed  Google Scholar 

  65. Patel JB, Leonard DG, Pan X, Musser JM, Berman RE, Nachamkin I (2000) Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol 38:246–251

    PubMed  CAS  Google Scholar 

  66. Cloud JL, Neal H, Rosenberry R, Turenne CY, Jama M, Hillyard DR, Carroll KC (2002) Identification of Mycobacterium spp. by using a commercial 16S ribosomal DNA sequencing kit and additional sequencing libraries. J Clin Microbiol 40:400–406

    Article  PubMed  CAS  Google Scholar 

  67. Hall L, Doerr KA, Wohlfiel SL, Roberts GD (2003) Evaluation of the MicroSeq system for identification of mycobacteria by 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J Clin Microbiol 41:1447–1453

    Article  PubMed  CAS  Google Scholar 

  68. Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, Piersimoni C (2001) Direct identification of mycobacteria from MB/BacT alert 3D bottles: comparative evaluation of two commercial probe assays. J Clin Microbiol 39:3222–3227

    Article  PubMed  CAS  Google Scholar 

  69. Miller N, Infante S, Cleary T (2000) Evaluation of the LiPA MYCOBACTERIA assay for identification of mycobacterial species from BACTEC 12B bottles. J Clin Microbiol 38:1915–1919

    PubMed  CAS  Google Scholar 

  70. Sarkola A, Makinen J, Marjamaki M, Marttila HJ, Viljanen MK, Soini H (2004) Prospective evaluation of the GenoType assay for routine identification of mycobacteria. Eur J Clin Microbiol Infect Dis 23:642–645

    Article  PubMed  CAS  Google Scholar 

  71. Lebrun L, Gonullu N, Boutros N, Davoust A, Guibert M, Ingrand D, Ghnassia JC, Vincent V, Doucet-Populaire F (2003) Use of INNO-LIPA assay for rapid identification of mycobacteria. Diagn Microbiol Infect Dis 46:151–153

    Article  PubMed  CAS  Google Scholar 

  72. Padilla E, Gonzalez V, Manterola JM, Perez A, Quesada MD, Gordillo S, Vilaplana C, Pallares MA, Molinos S, Sanchez MD, Ausina V (2004) Comparative evaluation of the new version of the INNO-LiPA Mycobacteria and genotype Mycobacterium assays for identification of Mycobacterium species from MB/Bac T liquid cultures artificially inoculated with mycobacterial strains. J Clin Microbiol 42:3083–3088

    Article  PubMed  CAS  Google Scholar 

  73. Tortoli E, Nanetti A, Piersimoni C, Cichero P, Farina C, Mucignat G, Scarparo C, Bartolini L, Valentini R, Nista D, Gesu G, Tosi CP, Crovatto M, Brusarosco G (2001) Performance assessment of new multiplex probe assay for identification of mycobacteria. J Clin Microbiol 39:1079–1084

    Article  PubMed  CAS  Google Scholar 

  74. Tortoli E, Mariottini A, Mazzarelli G (2003) Evaluation of INNO-LiPA MYCOBACTERIA v2: improved reverse hybridization multiple DNA probe assay for mycobacterial identification. J Clin Microbiol 41:4418–4420

    Article  PubMed  CAS  Google Scholar 

  75. Kim BJ, Lee KH, Park BN, Kim SJ, Bai GH, Kim SJ, Kook YH (2001) Differentiation of mycobacterial species by PCR-restriction analysis of DNA (342 base pairs) of the RNA polymerase gene (rpoB). J Clin Microbiol 39:2102–2109

    Article  PubMed  CAS  Google Scholar 

  76. Troesch A, Nguyen H, Miyada CG, Desvarenne S, Gingeras TR, Kaplan PM, Cros P, Mabilat C (1999) Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol 37:49–55

    PubMed  CAS  Google Scholar 

  77. Fukushima M, Kakinuma K, Hayashi H, Nagai H, Ito K, Kawaguchi R (2003) Detection and identification of Mycobacterium species isolates by DNA microarray. J Clin Microbiol 41:2605–2615

    Article  PubMed  CAS  Google Scholar 

  78. Hongmanee P, Stender H, Rasmussen OF (2001) Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and nontuberculous Mycobacterium species in smears of Lowenstein–Jensen and Mycobacteria Growth Indicator Tube cultures using peptide nucleic acid probes. J Clin Microbiol 39:1032–1035

    Article  PubMed  CAS  Google Scholar 

  79. Zerbi P, Schonau A, Bonetto S, Gori A, Costanzi G, Duca P, Vago L (2001) Amplified in situ hybridization with peptide nucleic acid probes for differentiation of Mycobacterium tuberculosis complex and nontuberculous Mycobacterium species on formalin-fixed, paraffin-embedded archival biopsy and autopsy samples. Am J Clin Pathol 116:770–775

    Article  PubMed  CAS  Google Scholar 

  80. Wade MM, Zhang Y (2004) Mechanisms of drug resistance in Mycobacterium tuberculosis. Front Biosci 9:975–994

    PubMed  CAS  Google Scholar 

  81. Kim BJ, Lee KH, Park BN, Kim SJ, Park EM, Park YG, Bai GH, Kim SJ, Kook YH (2001) Detection of rifampin-resistant Mycobacterium tuberculosis in sputa by nested PCR-linked single-strand conformation polymorphism and DNA sequencing. J Clin Microbiol 39:2610–2617

    Article  PubMed  CAS  Google Scholar 

  82. Nash KA, Gaytan A, Inderlied CB (1997) Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J Infect Dis 176:533–536

    Article  PubMed  CAS  Google Scholar 

  83. Piana A, Orru M, Masia MD, Sotgiu G, Muresu E, Maida A (2003) Detection of isoniazid and rifampin resistance in Mycobacterium tuberculosis strains by single-strand conformation polymorphism analysis and restriction fragment length polymorphism. New Microbiol 26:375–381

    PubMed  CAS  Google Scholar 

  84. Yue J, Shi W, Xie J, Li Y, Zeng E, Liang L, Wang H (2004) Detection of rifampin-resistant Mycobacterium tuberculosis strains by using a specialized oligonucleotide microarray. Diagn Microbiol Infect Dis 48:47–54

    Article  PubMed  CAS  Google Scholar 

  85. Watterson SA, Wilson SM, Yates MD, Drobniewski FA (1998) Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol 36:1969–1973

    PubMed  CAS  Google Scholar 

  86. Ruiz M, Torres MJ, Llanos AC, Arroyo A, Palomares JC, Aznar J (2004) Direct detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis in auramine-rhodamine-positive sputum specimens by real-time PCR. J Clin Microbiol 42:1585–1589

    Article  PubMed  CAS  Google Scholar 

  87. Mikhailovich V, Lapa S, Gryadunov D, Sobolev A, Strizhkov B, Chernyh N, Skotnikova O, Irtuganova O, Moroz A, Litvinov V, Vladimirskii M, Perelman M, Chernousova L, Erokhin V, Zasedatelev A, Mirzabekov A (2001) Identification of rifampin-resistant Mycobacterium tuberculosis strains by hybridization, PCR, and ligase detection reaction on oligonucleotide microchips. J Clin Microbiol 39:2531–2540

    Article  PubMed  CAS  Google Scholar 

  88. Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res 26:2150–2155

    Article  PubMed  CAS  Google Scholar 

  89. El-Hajj HH, Marras SA, Tyagi S, Kramer FR, Alland D (2001) Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. J Clin Microbiol 39:4131–4137

    Article  PubMed  CAS  Google Scholar 

  90. Bockstahler LE, Li Z, Nguyen NY, Van Houten KA, Brennan MJ, Langone JJ, Morris SL (2002) Peptide nucleic acid probe detection of mutations in Mycobacterium tuberculosis genes associated with drug resistance. Biotechniques 32:508–510

    PubMed  CAS  Google Scholar 

  91. Alland D, Kalkut GE, Moss AR, McAdam RA, Hahn JA, Bosworth W, Drucker E, Bloom BR (1994) Transmission of tuberculosis in New York City. An analysis by DNA fingerprinting and conventional epidemiologic methods. N Engl J Med 330:1710–1716

    Article  PubMed  CAS  Google Scholar 

  92. Gascoyne-Binzi DM, Barlow RE, Frothingham R, Robinson G, Collyns TA, Gelletlie R, Hawkey PM (2001) Rapid identification of laboratory contamination with Mycobacterium tuberculosis using variable number tandem repeat analysis. J Clin Microbiol 39:69–74

    Article  PubMed  CAS  Google Scholar 

  93. Edlin BR, Tokars JI, Grieco MH, Crawford JT, Williams J, Sordillo EM, Ong KR, Kilburn JO, Dooley SW, Castro KG (1992) An outbreak of multidrug-resistant tuberculosis among hospitalized patients with the acquired immunodeficiency syndrome. N Engl J Med 326:1514–1521

    Article  PubMed  CAS  Google Scholar 

  94. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD (1993) Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 31:1987–1995

    PubMed  Google Scholar 

  95. Spurgiesz RS, Quitugua TN, Smith KL, Schupp J, Palmer EG, Cox RA, Keim P (2003) Molecular typing of Mycobacterium tuberculosis by using nine novel variable-number tandem repeats across the Beijing family and low-copy-number IS6110 isolates. J Clin Microbiol 41:4224–4230

    Article  PubMed  CAS  Google Scholar 

  96. Rhee JT, Tanaka MM, Behr MA, Agasino CB, Paz EA, Hopewell PC, Small PM (2000) Use of multiple markers in population-based molecular epidemiologic studies of tuberculosis. Int J Tuberc Lung Dis 4:1111–1119

    PubMed  CAS  Google Scholar 

  97. Liebana E, Aranaz A, Francis B, Cousins D (1996) Assessment of genetic markers for species differentiation within the Mycobacterium tuberculosis complex. J Clin Microbiol 34:933–938

    PubMed  CAS  Google Scholar 

  98. Filliol I, Ferdinand S, Negroni L, Sola C, Rastogi N (2000) Molecular typing of Mycobacterium tuberculosis based on variable number of tandem DNA repeats used alone and in association with spoligotyping. J Clin Microbiol 38:2520–2524

    PubMed  CAS  Google Scholar 

  99. Goguet de la Salmoniere YO, Li HM, Torrea G, Bunschoten A, van Embden J, Gicquel B (1997) Evaluation of spoligotyping in a study of the transmission of Mycobacterium tuberculosis. J Clin Microbiol 35:2210–2214

    PubMed  CAS  Google Scholar 

  100. Miller N, Cleary T, Kraus G, Young AK, Spruill G, Hnatyszyn HJ (2002) Rapid and specific detection of Mycobacterium tuberculosis from acid-fast bacillus smear-positive respiratory specimens and BacT/ALERT MP culture bottles by using fluorogenic probes and real-time PCR. J Clin Microbiol 40:4143–4147

    Article  PubMed  CAS  Google Scholar 

  101. Desjardin LE, Perkins MD, Wolski K, Haun S, Teixeira L, Chen Y, Johnson JL, Ellner JJ, Dietze R, Bates J, Cave MD, Eisenach KD (1999) Measurement of sputum Mycobacterium tuberculosis messenger RNA as a surrogate for response to chemotherapy. Am J Respir Crit Care Med 160:203–210

    PubMed  CAS  Google Scholar 

  102. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  103. Ragno S, Romano M, Howell S, Pappin DJ, Jenner PJ, Colston MJ (2001) Changes in gene expression in macrophages infected with Mycobacterium tuberculosis: a combined transcriptomic and proteomic approach. Immunology 104:99–108

    Article  PubMed  CAS  Google Scholar 

  104. Selvaraj P, Chandra G, Jawahar MS, Rani MV, Rajeshwari DN, Narayanan PR (2004) Regulatory role of vitamin D receptor gene variants of Bsm I, Apa I, Taq I, and Fok I polymorphisms on macrophage phagocytosis and lymphoproliferative response to Mycobacterium tuberculosis antigen in pulmonary tuberculosis. J Clin Immunol 24:523–532

    Article  PubMed  CAS  Google Scholar 

  105. Uma H, Selvaraj P, Reetha AM, Xavier T, Prabhakar R, Narayanan PR (1999) Influence of HLA-DR antigens on lymphocyte response to Mycobacterium tuberculosis culture filtrate antigens and mitogens in pulmonary tuberculosis. Tuber Lung Dis 79:199–206

    Article  PubMed  CAS  Google Scholar 

  106. Shams H, Klucar P, Weis SE, Lalvani A, Moonan PK, Safi H, Wizel B, Ewer K, Nepom GT, Lewinsohn DM, Andersen P, Barnes PF (2004) Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles. J Immunol 173:1966–1977

    PubMed  CAS  Google Scholar 

  107. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV (1998) Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 338:640–644

    Article  PubMed  CAS  Google Scholar 

  108. Lopez-Maderuelo D, Arnalich F, Serantes R, Gonzalez A, Codoceo R, Madero R, Vazquez JJ, Montiel C (2003) Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 167:970–975

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. Yuen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, V.C.C., Yew, W.W. & Yuen, K.Y. Molecular diagnostics in tuberculosis. Eur J Clin Microbiol Infect Dis 24, 711–720 (2005). https://doi.org/10.1007/s10096-005-0039-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-005-0039-1

Keywords

Navigation