Skip to main content
Log in

Some error analysis on virtual element methods

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

Some error analyses on virtual element methods (VEMs) including inverse inequalities, norm equivalence, and interpolation error estimates are developed for polygonal meshes, each element of which admits a virtual quasi-uniform triangulation. This sub-mesh regularity covers the usual ones used for theoretical analysis of VEMs, and the proofs are presented by means of standard technical tools in finite element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L., Russo, A.: Equivalent projectors for virtual element methods. Computers & Mathematics with Applications 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 1–16 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão Da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Serendipity nodal VEM spaces. Comput. Fluids 141, 2–12 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão Da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. arXiv:1607.05988 (2016) (to appear on M3AS)

  7. Beirão Da Veiga, L., Manzini, G.: Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. (M2AN) 49, 577–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci. 26(4), 729–750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  11. Brenner, S.C., Guan, Q., Sung, L.: Some estimates for virtual element methods. Comput. Methods Appl. Math. (2017). https://doi.org/10.1515/cmam-2017-0008

    MathSciNet  Google Scholar 

  12. Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. ESAIM Math. Model. Numer. Anal. 43, 277–295 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  15. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37, 1317–1354 (2017)

    MathSciNet  Google Scholar 

  16. Chen, L., Wei, H.Y., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334, 327–348 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  18. Cockburn, B., Guzm, J., Soon, S.-C., Stolarski, H.K.: An analysis of the embedded discontinuous galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47(4), 2686–2707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dautray, R., Lions, J.-L.: Mathematicl Analysis and Numerical Methods for Science and Technology, Volume 1 Physical Origins and Classical Methods. Springer, Berlin (2000)

    MATH  Google Scholar 

  20. Dios, B.A.D., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. (M2AN) 50, 879–904 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guzey, S., Cockburn, B., Stolarski, H.K.: The embedded discontinuous Galerkin method: application to linear shell problems. Int. J. Numer. Methods Eng. 70, 757–790 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25(08), 1421–1445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. J. Comput. Appl. Math. 285, 45–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shi, Z.C., Wang, M.: Finite Element Methods. Science Press, Beijing (2013)

    Google Scholar 

  26. Wriggers, P., Rust, W., Reddy, B.: A virtual element method for contact. Comput. Mech. 58, 1039–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the referees for valuable suggestions and comments which improved an early version of the paper. The first author was supported by the National Science Foundation (NSF) DMS-1418934 and in part by the Sea Poly Project of Beijing Overseas Talents. The second author was partially supported by NSFC (Grant No. 11571237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Huang, J. Some error analysis on virtual element methods. Calcolo 55, 5 (2018). https://doi.org/10.1007/s10092-018-0249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0249-4

Keywords

Mathematics Subject Classification

Navigation