Skip to main content
Log in

Convergence of a decoupled mixed FEM for the dynamic Ginzburg–Landau equations in nonsmooth domains with incompatible initial data

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, we propose a fully discrete mixed finite element method for solving the time-dependent Ginzburg–Landau equations, and prove the convergence of the finite element solutions in general curved polyhedra, possibly nonconvex and multi-connected, without assumptions on the regularity of the solution. Global existence and uniqueness of weak solutions for the PDE problem are also obtained in the meantime. A decoupled time-stepping scheme is introduced, which guarantees that the discrete solution has bounded discrete energy, and the finite element spaces are chosen to be compatible with the nonlinear structure of the equations. Based on the boundedness of the discrete energy, we prove the convergence of the finite element solutions by utilizing a uniform \(L^{3+\delta }\) regularity of the discrete harmonic vector fields, establishing a discrete Sobolev embedding inequality for the Nédélec finite element space, and introducing a \(\ell ^2(W^{1,3+\delta })\) estimate for fully discrete solutions of parabolic equations. The numerical example shows that the constructed mixed finite element solution converges to the true solution of the PDE problem in a nonsmooth and multi-connected domain, while the standard Galerkin finite element solution does not converge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Since (1.10) implies \(\partial _t\mathbf{A}\cdot \mathbf{n}=0\), (1.8) and (1.10) imply \(\mathrm{Re}\big [\overline{\psi }\big (\frac{i}{\kappa } \nabla + \mathbf {A}\big ) \psi \big ]\cdot \mathbf{n}=0\) and (1.9) implies \([\nabla \times (\nabla \times \mathbf{A}-\mathbf{H})]\cdot \mathbf{n}=0\) (if a vector field \(\mathbf{u}\) satisfies \(\mathbf{n} \times \mathbf{u} = 0\) on \(\partial \Omega \), then \((\nabla \times \mathbf{u}) \cdot \mathbf{n}= 0\) on \(\partial \Omega \)), it follows from (1.7) that \(\nabla \phi \cdot \mathbf{n}=-\nabla (\nabla \cdot \mathbf{A})\cdot \mathbf{n}=0\) on each smooth piece of \(\partial \Omega \). Hence, (1.8)–(1.10) imply (1.5).

  2. The monotonicity makes use of the fact that \((|{\mathscr {S}}_h|^{2}{\mathscr {S}}_h-|\widetilde{\mathscr {S}}_h|^{2}\widetilde{\mathscr {S}}_h, {\mathscr {S}}_h-\widetilde{\mathscr {S}}_h)\ge 0\) for all \({\mathscr {S}}_h,\widetilde{\mathscr {S}}_h \in {\mathbb S}_{h}^r\).

  3. By identifying the vector fields with the 2-forms, in terms of the notation of [3, decomposition (2.18)], we have \(\mathbf{C}(\Omega )\cong {\mathfrak Z}^{*2}\), \(\mathbf{C}(\Omega )^\perp \cong \mathring{\mathfrak B}^2\), \(\mathbf{G}(\Omega )\cong {\mathfrak B}^{*2}\) and \(\mathbf{X}(\Omega )\cong \mathring{\mathfrak H}^2\).

  4. By identifying the vector fields with the 2-forms, in terms of the notation of [3, definition (2.12)], we have \(\widetilde{\mathbf{X}}(\Omega )={\mathfrak H}^2\).

  5. By identifying the vector fields with the 2-forms, in terms of the notation of [3, definition (2.12)], we have \(\widetilde{\mathbf{X}}(\Omega )\cong {\mathfrak H}^2\) and \(\widetilde{\mathbf{Y}}(\Omega )\cong H\Lambda ^2(\Omega )\cap \mathring{H}^*\Lambda ^2(\Omega )\cap {\mathfrak H}^{2\perp }\). Then, by using [3, Theorem 2.2 on page 23] and the Lax–Milgram lemma, one can show that the problem (3.13)–(3.15) has a unique weak solution in \(\widetilde{\mathbf{Y}}(\Omega )\).

  6. If \(\mathbf{v}\in \mathbf{H}(\mathrm{div})\) then \(\mathbf{v}\cdot \mathbf{n}\) is well defined on \(\partial \Omega \). In this case, the divergence-free part \(\nabla \times \mathbf{u}\) satisfies \((\nabla \times \mathbf{u})\cdot \mathbf{n}=0\) on \(\partial \Omega \), due to the boundary conditions implicitly imposed in the weak formulations (3.16) and (3.17).

  7. See (3.11)–(3.15) for the definition of the space \(\widetilde{\mathbf{Y}}(\Omega )\).

  8. See footnote  6 on this boundary condition.

  9. This is a immediate consequence of Lemma 3.3 and the following decomposition proved in [8]:

    $$\begin{aligned} \mathbf{H}(\mathrm{curl,div})= \mathbf{H}^1+ \{\nabla \varphi :\varphi \in H^1,\,\, \Delta \varphi \in L^2,\,\,\nabla \varphi \cdot \mathbf{n} =0\,\,\text{ on }\,\,\partial \Omega \}. \end{aligned}$$
  10. By identifying the vector fields with the 1-forms, in terms of the notation of [3, Theorem 5.11 on page 74], we have \(\mathbf{C}(\Omega )\cong {\mathfrak Z}^{1}\) and \(\mathbf{C}(\Omega )^\perp \cong {\mathfrak Z}^{1\perp }\).

References

  1. Adams, R.A.: Sobolev spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth Domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica, pp. 1–155 (2006)

  4. Alstrøm, T.S., Sørensen, M.P., Pedersen, N.F., Madsen, F.: Magnetic flux lines in complex geometry type-II superconductors studied by the time dependent Ginzburg-Landau equation. Acta Appl. Math. 115, 63–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ashyralyev, A., Piskarev, S., Weis, L.: On well-posedness of difference schemes for abstract parabolic equations in \(L_p([0, T];E)\) spaces. Numer. Funct. Anal. Optim. 23, 669–693 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baelus, B.J., Kadowaki, K., Peeters, F.M.: Influence of surface defects on vortex penetration and expulsion in mesoscopic superconductors. Phys. Rev. B 71, 024514 (2005)

    Article  Google Scholar 

  7. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction, Springer-Verlag Berlin Heidelberg 1976, Printed in Germany

  8. Birman, M., Solomyak, M.: \(L^2\)-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42, 75–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.: Mixed finite element methods for a dynamical Ginzburg-Landau model in superconductivity. Numer. Math. 76, 323–353 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Dai, S.: Adaptive Galerkin methods with error control for a dynamical Ginzburg-Landau model in superconductivity. SIAM J. Numer. Anal. 38, 1961–1985 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Hoffmann, K.H., Liang, J.: On a non-stationary Ginzburg-Landau superconductivity model. Math. Methods Appl. Sci. 16, 855–875 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christiansen, S.H., Scheid, C.: Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation. ESAIM: M2AN 45, 739–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christiansen, S. H., Munthe-Kaas, H. Z., Owren, B.: Topics in structure-preserving discretization. Acta Numerica, pp. 1-119 (2011)

  14. Costabel, M.: A remark on the regularity of solutions of Maxwells equations on Lipschitz domains. Math. Methods Appl. Sci. 12, 365–368 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dauge, M.: Elliptic Boundary Value Problems in Corner Domains. Springer-Verlag, Berlin Heidelberg (1988)

    Book  MATH  Google Scholar 

  16. Dauge, M.: Neumann and mixed problems on curvilinear polyhedra. Integr. Equat. 0per Th. 15, 227–261 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dauge, M.: Regularity and singularities in polyhedral domains. The case of Laplace and Maxwell equations. Slides d’un mini-cours de 3 heures, Karlsruhe, 7 avril 2008. https://perso.univ-rennes1.fr/monique.dauge/publis/Talk_Karlsruhe08.html

  18. De Gennes, P.G.: Superconductivity of Metal and Alloys. Advanced Books Classics, Westview Press (1999)

    Google Scholar 

  19. Du, Q.: Discrete gauge invariant approximations of a time dependent ginzburg-landau model of superconductivity. Math. Comp. 67, 965–986 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Du, Q.: Numerical approximations of the Ginzburg-Landau models for superconductivity. J. Math. Phys. 46, 095109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, Q., Ju, L.: Approximations of a Ginzburg-Landau model for superconducting hollow spheres based on spherical centroidal Voronoi tessellations. Math. Comp. 74, 1257–1280 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frahm, H., Ullah, S., Dorsey, A.: Flux dynamics and the growth of the superconducting phase. Phys. Rev. Letters 66, 3067–3072 (1991)

    Article  Google Scholar 

  23. Gao, H., Li, B., Sun, W.: Optimal error estimates of linearized Crank-Nicolson-Galerkin FEMs for the time-dependent Ginzburg-Landau equations. SIAM J. Numer. Anal. 52, 1183–1202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gao, H., Sun, W.: An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity. J. Comput. Physics 294, 329–345 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao, H., Sun, W.: Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg–Landau equations of superconductivity. Preprint. arXiv:1508.05601

  26. Ginzburg, V., Landau, L.: Theory of Superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)

    Google Scholar 

  27. Gropp, W.D., Kaper, H.G., Leaf, G.K., Levine, D.M., Palumbo, M., Vinokur, V.M.: Numerical simulation of vortex dynamics in type-II superconductors. J. Comput. Phys. 123, 254–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gor’kov, L.P., Eliashberg, G.M.: Generalization of the Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP 27, 328–334 (1968)

    Google Scholar 

  29. Gunter, D., Kaper, H., Leaf, G.: Implicit integration of the time-dependent Ginzburg–Landau equations of superconductivity. SIAM J. Sci. Comput. 23, 1943–1958 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kovács, B., Li, B., Lubich, Ch.: \(A\)-stable time discretizations preserve maximal parabolic regularity. SIAM J. Numer. Anal. 54, 3600–3624 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kozono, H., Yanagisawa, T.: \(L^r\)-variational inequality for vector fields and the Helmholtz–Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58, 1853–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, B., Zhang, Z.: A new approach for numerical simulation of the time-dependent Ginzburg–Landau equations. J. Comput. Phys. 303, 238–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, B., Zhang, Z.: Mathematical and numerical analysis of time-dependent Ginzburg–Landau equations in nonconvex polygons based on Hodge decomposition. Math. Comp. 86, 1579–1608 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, B., Yang, C.: Global well-posedness of the time-dependent Ginzburg–Landau superconductivity model in curved polyhedra. J. Math. Anal. Appl. 451, 102–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, B.: Maximum-norm stability and maximal \(L^p\) regularity of FEMs for parabolic equations with Lipschitz continuous coefficients. Numer. Math. 131, 489–516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, B.: Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. Math. Comp. (2017). doi:10.1090/mcom/3316

  37. Li, B., Sun, W.: Maximal \(L^p\) analysis of finite element solutions for parabolic equations with nonsmooth coefficients in convex polyhedra. Math. Comp. 86, 1071–1102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, F., Mondello, M., Goldenfeld, N.: Kinetics of the superconducting transition. Phys. Rev. Lett. 66, 3071–3074 (1991)

    Article  Google Scholar 

  39. Mu, M.: A linearized Crank–Nicolson–Galerkin method for the Ginzburg–Landau model. SIAM J. Sci. Comput. 18, 1028–1039 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mu, M., Huang, Y.: An alternating Crank-Nicolson method for decoupling the Ginzburg–Landau equations. SIAM J. Numer. Anal. 35, 1740–1761 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nédélec, J.C.: Mixed finite element in \({\mathbb{R}}^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nédélec, J.C.: A new family of mixed finite elements in \({\mathbb{R}}^3\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rychkov, V.S.: On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains. J. Lond. Math. Soc. 60, 237–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Showalter, R.E.: A decoupled mixed FEM for Ginzburg-Landau equations. Math. Surv. Monogr. 49, (1997)

  45. Tinkham, M.: Introduction to Superconductivity, 2nd edn. McGraw-Hill, New York (1994)

    Google Scholar 

  46. Richardson, W., Pardhanani, A., Carey, G., Ardelea, A.: Numerical effects in the simulation of Ginzburg–Landau models for superconductivity. Int. J. Numer. Eng. 59, 1251–1272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vodolazov, D.Y., Maksimov, I.L., Brandt, E.H.: Vortex entry conditions in type-II superconductors. Effect of surface defects. Physica C 384, 211–226 (2003)

    Article  Google Scholar 

  48. Winiecki, T., Adams, C.: A fast semi-implicit finite difference method for the TDGL equation. J. Comput. Phys. 179, 127–139 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Weis, L.: A new approach to maximal \(L^p\)-regularity. In: Evolution Equ. and Appl. Physical Life Sci., Lecture Notes in Pure and Applied Mathematics 215, Marcel Dekker, New York, pp. 195–214 (2001)

  50. Weck, N.: Maxwells boundary value problems on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46, 410–437 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, C.: A linearized Crank-Nicolson-Galerkin FEM for the time-dependent Ginzburg–Landau equations under the temporal gauge. Numer. Methods Partial Differ. Equ. 30, 1279–1290 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to express my gratitude to Prof. Christian Lubich for the helpful discussions on the time discretization, and thank Prof. Weiwei Sun for the email communications on this topic. I also would like to thank Prof. Qiang Du for the communications in CSRC, Beijing, on the time-independency of the external magnetic field and the incompatibility of the initial data with the boundary conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buyang Li.

Additional information

This work was partially supported by a Grant from the Germany/Hong Kong Joint Research Scheme sponsored by the Research Grants Council of Hong Kong and the German Academic Exchange Service of Germany (Ref. No. G- PolyU502/16). The research stay of the author at Universität Tübingen was partially supported by the Alexander von Humboldt Foundation.

Appendix: Well-posedness of the PDE problem (1.6)–(1.11)

Appendix: Well-posedness of the PDE problem (1.6)–(1.11)

Theorem A.1

There exists a unique weak solution of (1.6)–(1.11) with the following regularity:

$$\begin{aligned}&\psi \in C([0,T];{\mathcal L}^2)\cap L^\infty (0,T;{\mathcal H}^1) , \quad \partial _t\psi \in L^2(0,T;{\mathcal L}^2),\\&|\psi |\le 1\quad \text{ a.e. }~\text{ in }~\,\Omega \times (0,T),\\&\mathbf{A}\in C([0,T];\mathbf{L}^2)\cap L^{\infty }(0,T;\mathbf{H}(\mathrm{curl},\mathrm{div})) , \quad \partial _t\mathbf{A}\in L^2(0,T;\mathbf{L}^2) . \end{aligned}$$

Proof

Global well-posedness of time-dependent Ginzburg–Landau equations in curved polyhedra was proved in [34]. The convergence of numerical solutions proved in this paper yields an alternative proof.

In fact, from (3.95) and (3.98) we see that there exists a weak solution \((\Psi ,{\varvec{\Lambda }})\) of (1.6)–(1.11) with the regularity above. It remains to prove the uniqueness of the weak solution.

Suppose that there are two weak solutions \((\psi ,\mathbf{A})\) and \((\Psi ,{\varvec{\Lambda }})\) for the system (1.6)–(1.11). Then we define \(e=\psi -\Psi \) and \(\mathbf{E}=\mathbf{A}-{\varvec{\Lambda }}\) and consider the difference equations

$$\begin{aligned}&\int _0^T\Big [\big (\eta \partial _t e ,\varphi \big ) + \frac{1}{\kappa ^2}\big (\nabla e, \nabla \varphi \big ) + \big (|\mathbf{A}|^2 e, \varphi \big ) \Big ]\mathrm{d}t\nonumber \\&\quad =\int _0^T\Big [-\frac{i}{\kappa }\big (\mathbf{A}\cdot \nabla e ,\varphi \big ) -\frac{i}{\kappa }\big (\mathbf{E}\cdot \nabla \Psi ,\varphi \big ) +\frac{i}{\kappa }\big (e \mathbf{A},\nabla \varphi \big ) +\frac{i}{\kappa }\big (\Psi \mathbf{E},\nabla \varphi \big ) \nonumber \\&\qquad - \big ((|\mathbf{A}|^2 -|{\varvec{\Lambda }}|^2) \Psi , \varphi \big ) -\big ( (|\psi |^{2}-1) \psi -(|\Psi |^{2}-1) \Psi ,\varphi \big )\Big ]\mathrm{d}t\nonumber \\&\qquad -\int _0^T\big (i\eta \kappa \psi \nabla \cdot \mathbf{E} +i\eta \kappa e\nabla \cdot {\varvec{\Lambda }},\varphi \big )\mathrm{d}t , \end{aligned}$$
(A.1)

and

$$\begin{aligned}&\int _0^T\Big [\big (\partial _t\mathbf{E} ,\mathbf{a}\big ) + \big (\nabla \times \mathbf{E},\nabla \times \mathbf{a}\big ) +\big (\nabla \cdot \mathbf{E},\nabla \cdot \mathbf{a}\big ) \Big ]\mathrm{d}t\nonumber \\&\quad =-\int _0^T\mathrm{Re} \bigg ( \frac{i}{\kappa }( \overline{\psi }\nabla \psi - \overline{\Psi }\nabla \Psi ) + \mathbf{A}(|\psi |^2-|\Psi |^2)+|\Psi |^2 \mathbf{E},\, \mathbf{a}\bigg ) \mathrm{d}t , \end{aligned}$$
(A.2)

which hold for any \(\varphi \in L^2(0,T;{\mathcal H}^1)\) and \(\mathbf{a}\in L^2(0,T;\mathbf{H}(\mathrm{curl},\mathrm{div}))\). Choosing \(\varphi (x,t)=e(x,t)1_{(0,t')}(t)\) in (A.1) and considering the real part, we obtain

$$\begin{aligned}&\frac{\eta }{2} \Vert e(\cdot ,t') \Vert _{\mathcal{L}^2}^2 + \int _0^{t'}\Big (\frac{1}{\kappa ^2}\Vert \nabla e\Vert _{\mathcal{L}^2}^2 + \Vert \mathbf{A} e\Vert _{\mathbf{L}^2}^2\Big )\mathrm{d}t \\&\quad \le \int _0^{t'}\Big (C\Vert \mathbf{A}\Vert _{\mathbf{L}^{3+\delta }}\Vert \nabla e\Vert _{\mathcal{L}^2} \Vert e\Vert _{\mathcal{L}^{6-4\delta /(1+\delta )}} +C\Vert \mathbf{E}\Vert _{\mathbf{L}^{3+\delta }}\Vert \nabla \Psi \Vert _{\mathcal{L}^2} \Vert e\Vert _{\mathcal{L}^{6-4\delta /(1+\delta )}}\\&\qquad +C\Vert e\Vert _{\mathcal{L}^{6-4\delta /(1+\delta )}} \Vert \mathbf{A}\Vert _{\mathbf{L}^{3+\delta }} \Vert \nabla e\Vert _{\mathcal{L}^2} +C\Vert \mathbf{E}\Vert _{\mathbf{L}^2}\Vert \nabla e\Vert _{\mathcal{L}^2} \\&\qquad +C(\Vert \mathbf{A}\Vert _{\mathbf{L}^{3+\delta }}+\Vert {\varvec{\Lambda }}\Vert _{\mathbf{L}^{3+\delta }}) \Vert \mathbf{E}\Vert _{\mathbf{L}^2} \Vert e\Vert _{\mathcal{L}^{6-4\delta /(1+\delta )}} +C\Vert e\Vert _{\mathcal{L}^2}^2 +C\Vert \nabla \cdot \mathbf{E}\Vert _{L^2}\Vert e\Vert _{\mathcal{L}^2}\Big )\mathrm{d}t \\&\quad \le \int _0^{t'}\Big (C\Vert \nabla e\Vert _{L^2} (C_\epsilon \Vert e\Vert _{\mathcal{L}^2}+\epsilon \Vert \nabla e\Vert _{\mathcal{L}^2}) +C\Vert \mathbf{E}\Vert _{\mathbf{H}(\mathrm{curl},\mathrm{div})} (C_\epsilon \Vert e\Vert _{\mathcal{L}^2}+\epsilon \Vert \nabla e\Vert _{\mathcal{L}^2})\\&\qquad +C\Vert \nabla e\Vert _{\mathcal{L}^2}(C_\epsilon \Vert e\Vert _{\mathcal{L}^2} +\epsilon \Vert \nabla e\Vert _{\mathcal{L}^2}) +C\Vert \mathbf{E}\Vert _{\mathbf{L}^2}\Vert \nabla e\Vert _{\mathcal{L}^2} \\&\qquad +C\Vert \mathbf{E}\Vert _{\mathbf{L}^2}(C_\epsilon \Vert e\Vert _{\mathcal{L}^2} +\epsilon \Vert \nabla e\Vert _{\mathcal{L}^2}) +C\Vert e\Vert _{\mathcal{L}^2}^2 +C\Vert \nabla \cdot \mathbf{E}\Vert _{L^2}\Vert e\Vert _{\mathcal{L}^2} \Big )\mathrm{d}t\\&\quad \le \int _0^{t'}\Big (\epsilon \Vert \nabla e\Vert _{\mathcal{L}^2}^2+ \epsilon \Vert \nabla \times \mathbf{E}\Vert _{\mathbf{L}^2}^2 + \epsilon \Vert \nabla \cdot \mathbf{E}\Vert _{L^2}^2 +C_\epsilon \Vert e\Vert _{\mathcal{L}^2}^2 + C_\epsilon \Vert \mathbf{E}\Vert _{\mathbf{L}^2}^2\Big )\mathrm{d}t , \end{aligned}$$

where \(\epsilon \) can be arbitrarily small. By choosing \(\mathbf{a}(x,t)=\mathbf{E}(x,t)1_{(0,t')}(t)\) in (A.2), we get

$$\begin{aligned}&\frac{1}{2}\Vert \mathbf{E}(\cdot ,t')\Vert _{\mathbf{L}^2}^2 +\int _0^{t'}\Big (\Vert \nabla \times \mathbf{E} \Vert _{\mathbf{L}^2}^2 +\Vert \nabla \cdot \mathbf{E} \Vert _{\mathbf{L}^2}^2 \Big )\mathrm{d}t\\&\quad \le \int _0^{t'}\Big (C \Vert e\Vert _{\mathcal{L}^{6-4\delta /(1+\delta )}} \Vert \nabla \psi \Vert _{L^2}\Vert \mathbf{E}\Vert _{\mathbf{L}^{3+\delta }} +C\Vert \nabla e \Vert _{\mathcal{L}^2} \Vert \mathbf{E}\Vert _{\mathbf{L}^2} \\&\qquad + (\Vert e\Vert _{L^{6-4\delta /(1+\delta )}}\Vert \mathbf{A}\Vert _{\mathbf{L}^{3+\delta }} +\Vert \mathbf{E}\Vert _{\mathbf{L}^2})\Vert \mathbf{E}\Vert _{L^2}\Big )\mathrm{d}t\\&\quad \le \int _0^{t'}\Big (C(C_\epsilon \Vert e\Vert _{\mathcal{L}^2} +\epsilon \Vert \nabla e \Vert _{\mathcal{L}^2}) \Vert \mathbf{E}\Vert _{\mathbf{H}(\mathrm{curl},\mathrm{div})} +\Vert \nabla e \Vert _{\mathcal{L}^2} \Vert \mathbf{E}\Vert _{L^2} \\&\qquad + (\Vert e\Vert _{\mathcal{L}^2} +\Vert \nabla e\Vert _{\mathcal{L}^2} +\Vert \mathbf{E}\Vert _{\mathbf{L}^2})\Vert \mathbf{E}\Vert _{\mathbf{L}^2}\Big )\mathrm{d}t\\&\quad \le \int _0^{t'}\Big (\epsilon \Vert \nabla e\Vert _{\mathcal{L}^2}^2 +\epsilon \Vert \nabla \times \mathbf{E}\Vert _{\mathbf{L}^2} +\epsilon \Vert \nabla \cdot \mathbf{E}\Vert _{\mathbf{L}^2} +C_\epsilon \Vert e\Vert _{\mathcal{L}^2}^2 + C_\epsilon \Vert \mathbf{E}\Vert _{\mathbf{L}^2}^2\Big )\mathrm{d}t , \end{aligned}$$

where \(\epsilon \) can be arbitrarily small. By choosing \(\epsilon <\frac{1}{4} \min (1, \kappa ^{-2} )\) and summing up the two inequalities above, we have

$$\begin{aligned}&\frac{\eta }{2}\Vert e(\cdot ,t')\Vert _{L^2}^2 +\frac{1}{2}\Vert \mathbf{E}(\cdot ,t')\Vert _{L^2}^2 \le \int _0^{t'}\Big (C\Vert e\Vert _{L^2}^2 +C\Vert \mathbf{E}\Vert _{L^2}^2\Big )\mathrm{d}t , \end{aligned}$$

which implies

$$\begin{aligned}&\max _{t\in (0,T)} \bigg (\frac{\eta }{2}\Vert e\Vert _{L^2}^2 +\frac{1}{2}\Vert \mathbf{E}\Vert _{L^2}^2\bigg )=0 \end{aligned}$$

via Gronwall’s inequality. Uniqueness of the weak solution is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B. Convergence of a decoupled mixed FEM for the dynamic Ginzburg–Landau equations in nonsmooth domains with incompatible initial data. Calcolo 54, 1441–1480 (2017). https://doi.org/10.1007/s10092-017-0237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-017-0237-0

Keywords

Mathematics Subject Classification

Navigation