Skip to main content
Log in

An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, a novel energy-preserving numerical scheme for nonlinear Hamiltonian wave equations with Neumann boundary conditions is proposed and analyzed based on the blend of spatial discretization by finite element method (FEM) and time discretization by Average Vector Field (AVF) approach. We first use the finite element discretization in space, which leads to a system of Hamiltonian ODEs whose Hamiltonian can be thought of as the semi-discrete energy of the original continuous system. The stability of the semi-discrete finite element scheme is analyzed. We then apply the AVF approach to the Hamiltonian ODEs to yield a new and efficient fully discrete scheme, which can preserve exactly (machine precision) the semi-discrete energy. The blend of FEM and AVF approach derives a new and efficient numerical scheme for nonlinear Hamiltonian wave equations. The numerical results on a single-soliton problem and a sine-Gordon equation are presented to demonstrate the remarkable energy-preserving property of the proposed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reich, S.: Multi-symplectic Runge–Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ge, Z., Marsden, J.E.: Lie-Poisson Hamilton–Jacobi theory and Lie-Poisson integrators. Phys. Lett. A 133, 134–139 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wazwaz, A.M.: New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 13, 889–901 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dodd, R.K., Eilbeck, I.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic, London (1982)

    MATH  Google Scholar 

  5. Biswas, A.: Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3239–3249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shakeri, F., Dehghan, M.: Numerical solution of the Klein–Gordon equation via He’s variational iteration method. Nonlinear Dyn. 51, 89–97 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Mirezaei, D.: Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bratsos, A.G.: On the numerical solution of the Klein–Gordon equation. Numer. Methods Partial Differ. Equ. 25, 939–951 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Budd, C.J., Piggot, M.D.: Geometric Integration and Its Applications, Handbook of Numerical Analysis, vol. XI. North-Holland, Amsterdam (2003)

    Google Scholar 

  11. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein–Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ide, T., Okada, M.: Numerical simulation for a nonlinear partial differential equation with variable coefficients by means of the discrete variational derivative method. J. Comput. Appl. Math. 194, 425–459 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chabassier, J., Joly, P.: Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: application to the vibrating piano string. Comput. Methods Appl. Mech. Eng. 199, 2779–2795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schiesser, W.: The numerical methods of liness: integration of partial differential equation. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  16. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A. 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shampine, L.F.: Conservation laws and the numerical solution of ODEs. Math. Appl. B 12, 1287–1296 (1986)

    MathSciNet  MATH  Google Scholar 

  18. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1045 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iserles, A., Zanna, A.: Preserving algebraic invariants with Runge–Kutta methods. J. Comput. Appl. Math. 125, 69–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Iserles, A., Quispel, G.R.W., Tse, P.S.P.: B-series methods cannot be volume-preserving. BIT Numer. Math. 47, 351–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hairer, E., McLachlan, R.I., Skeel, R.D.: On energy conservation of the simplified Takahashi-Imada method. Math. Model. Numer. Anal. 43, 631–644 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. McLachlan, R.I., Quispel, G.R.W., Tse, P.S.P.: Linearization-preserving selfadjoint and symplectic integrators. BIT Numer. Math. 49, 177–197 (2009)

    Article  MATH  Google Scholar 

  23. Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, K., Shi, W., Wu, X.: An extended discrete gradient formula for oscillatory Hamiltonian systems. J. Phys. A Math. Theor. 46(16520), 3 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Wang, B., Wu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, B., Yang, H., Meng, F.: Sixth order symplectic and symmetric explicit ERKN schemes for solving multi frequency oscillatory nonlinear Hamiltonian equations. Calcolo 54, 117–140 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, B., Iserles, A., Wu, X.: Arbitrary order trigonometric Fourier collocation methods for second-order ODEs. Found. Comput. Math. 16, 151–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)

    Book  MATH  Google Scholar 

  29. Butcher, J.C.: Numerical Analysis of Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  30. Lambert, J.D., Watson, I.A.: Symmetric multistip methods for periodic initial value problems. J. Inst. Math. Appl. 18(189–20), 2 (1976)

    Google Scholar 

  31. Dehghan, M., Mohebbi, A., Asgari, Z.: Fourth-order compact solution of the nonlinear Klein–Gordon equation. Numer. Algor. 52, 523–540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bratsos, A.G.: A numerical method for the one-dimentional sine-Gordon equation. Numer. Mehods Partial Differ. Equ. 24(833–84), 4 (2008)

    Google Scholar 

  33. Mohebbi, A., Dehghan, M.: High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changying Liu.

Additional information

The research was supported in part by the Natural Science Foundation of China under Grant 11501288 and 11671200, by the Specialized Research Foundation for the Doctoral Program of Higher Education under Grant 20100091110033, by the 985 Project at Nanjing University under Grant 9112020301, by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, by the Natural Science Foundation of Jiangsu Province under Grant BK20150934, and by the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant 16KJB110010 and 14KJB110009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Liu, K., Wu, X. et al. An energy-preserving algorithm for nonlinear Hamiltonian wave equations with Neumann boundary conditions. Calcolo 54, 1379–1402 (2017). https://doi.org/10.1007/s10092-017-0232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10092-017-0232-5

Keywords

Mathematics Subject Classification

Navigation