Skip to main content
Log in

Comparing GABAergic cell populations in the thalamic reticular nucleus of normal and genetic absence epilepsy rats from Strasbourg (GAERS)

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The GABAergic neurons of the thalamic reticular nucleus (TRN) play a critical role in the generation and control of spike-and-wave discharges (SWDs) in absence epilepsy. We have used the disector method to count the GABA+ve and GABA−ve neurons in the intermediate TRN sector of genetic absence epilepsy rats from Strasbourg (GAERS) and of Wistar rats during postnatal (P) development at P10, P20, P30, and P60 days. The same part of TRN was removed from each animal, the GABAergic neurons were labelled using light-microscopical GABA immunohistochemistry and the data were statistically analysed. Both the GAERS and Wistar animals showed an increase in the density of GABA+ve and GABA−ve cells from P10 to P20. From P20 to P60, Wistar animals showed no significant differences for either cell type, but in the GAERS a progressive decrease from P20 to P60 was observed in both GABA+ve and GABA−ve cells. The decrease of the GABA−ve cells was more pronounced than that of the GABA+ve cells. There were no significant differences between cell sizes for GAERS and Wistar rats at any developmental age. The lower density GABA+ve and GABA−ve neurons at P30 and P60 of GAERS compared to Wistar animals may contribute to the generation of SWDs in absence epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:285–308

    Article  PubMed  CAS  Google Scholar 

  2. Steriade M, Parent A, Hada J (1984) Thalamic projections of nucleus reticularis thalami in the cat: a study using retrograde transport of horseradish peroxidase and fluorescent tracers. J Comp Neurol 299:531–547

    Article  Google Scholar 

  3. Ohara PT, Lieberman AR (1985) The thalamic reticular nucleus of the adult rat: experimental anatomical studies. J Neurocytol 14:365–411

    Article  PubMed  CAS  Google Scholar 

  4. De Biasi A, Frassoni C, Spreafico R (1986) GABA immunoreactivity in the thalamic reticular nucleus of the rat. A light and electron microscopical study. Brain Res 339:143–147

    Article  Google Scholar 

  5. Cornwall J, Cooper JD, Phillipson OT (1990) Projections to the rostral thalamic nucleus in the rat. Exp Brain Res 80:157–171

    Article  PubMed  CAS  Google Scholar 

  6. Reardon F, Mitrofanis J (2000) Organization of the amygdalo-thalamic pathways in rats. Anat Embryol 201:75–84

    Article  PubMed  CAS  Google Scholar 

  7. Çavdar S, Onat F, Çakmak YÖ, Saka E, Yananli HR, Aker R (2006) Connections of the zona incerta to the reticular nucleus of the thalamus in the rat. J Anat 209:251–258

    Article  PubMed  Google Scholar 

  8. Çavdar S, Onat FY, Cakmak YO, Yananli HR, Gülçebi M, Aker R (2008) The pathways connecting the hippocampal formation, the thalamic reuniens nucleus and the thalamic reticular nucleus in the rat. J Anat 212:249–256

    Article  PubMed  Google Scholar 

  9. Montero VM, Guillery RW, Woolsey CN (1977) Retinotopic organisation within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Res 138:407–421

    Article  PubMed  CAS  Google Scholar 

  10. Crabtree JW, Killackey HP (1989) The topographic organization and axis of projections within the visual sector of the rabbit’s thalamic reticular nucleus. Eur J Neurosci 1:94–109

    Article  PubMed  Google Scholar 

  11. Conley M, Diamond IT (1990) Organization of the visual reticular thalamic nucleus in Galago. Eur J Neurosci 2:211–226

    Article  PubMed  Google Scholar 

  12. Conley M, Kupersmith AC, Diamond IT (1991) The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in Galago. Eur J Neurosci 3:1089–1103

    Article  PubMed  Google Scholar 

  13. Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. PNAS 81:4586–4590

    Article  PubMed  CAS  Google Scholar 

  14. Jones EG (1985) The thalamus. Plenum, New York

    Book  Google Scholar 

  15. Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half of century. J Comp Neurol 463:360–371

    Article  PubMed  CAS  Google Scholar 

  16. Sherman MS, Guillery RW (2006) Exploring the thalamus and its role in cortical function. The MIT Press, Cambridge

    Google Scholar 

  17. Steriade M, Deschênes M (1984) The thalamus as a neuronal oscillator. Brain Res 320:1–63

    PubMed  CAS  Google Scholar 

  18. Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6:68–81

    PubMed  CAS  Google Scholar 

  19. Steriade M, Domich L, Oakson G, Deschenes M (1987) The deafferented reticularis thalami nucleus generates spindle rhythmicity. J Neurophysiol 57:260–273

    PubMed  CAS  Google Scholar 

  20. Avanzini G, Vergnes M, Spreafico R, Marescaux C (1993) Calcium-dependent regulation of genetically determined spike and waves by the reticular thalamic nucleus of rats. Epilepsia 34:1–7

    Article  PubMed  CAS  Google Scholar 

  21. Vergnes M, Marescaux C (1992) Cortical and thalamic lessions in the rat with genetic absence epilepsy. J Neural Transm 35:71–83

    CAS  Google Scholar 

  22. Crunelli V, Leresche N (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 3:371–382

    Article  PubMed  CAS  Google Scholar 

  23. Pinault D (2003) Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5–9 Hz oscillations. J Physiol 552:881–905

    Article  PubMed  CAS  Google Scholar 

  24. Meeren HK, van Luijtelaar EL, Lopes da Silva FH, Coenen AM (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62:371–376

    Article  PubMed  Google Scholar 

  25. Polack PO, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S (2007) Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence epilepsy. J Neurosci 27:6590–6599

    Article  PubMed  CAS  Google Scholar 

  26. Vergnes M, Marescaux C, Depaulis A, Micheletti G, Warter JM (1987) Spontaneous spike and wave discharges in thalamus and cortex in a rat model of genetic petit mal-like seizures. Exp Neurol 96:127–136

    Article  PubMed  CAS  Google Scholar 

  27. Snead OC (1995) Basic mechanisms of generalized absence seizures. Ann Neurol 37:146–157

    Article  PubMed  Google Scholar 

  28. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57

    Article  PubMed  CAS  Google Scholar 

  29. Ramos R, Requena V, Díaz F, Villena A, Pérez de Vargas I (1995) Evolution of neuronal density in the ageing thalamic reticular nucleus. Mech Ageing Dev 31:21–29

    Article  Google Scholar 

  30. Satorre J, Cano J, Reinoso-Suárez F (1985) Stability of the neuronal population of the dorsal lateral geniculate nucleus (LGNd) of aged rats. Brain Res 29:375–377

    Article  Google Scholar 

  31. Luczyńska A, Dziewiatkowski J, Jagalska-Majewska H, Kowiański P, Wójcik S, Labuda C, Moryś J (2003) Qualitative and quantitative analysis of the postnatal development of the ventroposterolateral nucleus of the thalamus in rat and rabbit. Folia Morphol (Warsz) 62:75–87

    Google Scholar 

  32. Mitrofanis J, Baker GE (1993) Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons. J Comp Neurol 338:575–587

    Article  PubMed  CAS  Google Scholar 

  33. Benitez-Diaz PL, Miranda-Contreras RV, Mendoza-Briceno ZC, Pena-Contreras EL, Palacios-Pru E (2003) Prenatal and postnatal contents of amino acid neurotransmitters in mouse parietal cortex. Dev Neurosci 25:366–374

    Article  PubMed  CAS  Google Scholar 

  34. Cobas A, Fairén A, Alvarez-Bolado G, Sánchez MP (1991) Prenatal development of the intrinsic neurons of the rat neocortex: a comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Neuroscience 40:375–397

    Article  PubMed  CAS  Google Scholar 

  35. Schousboe A, Redburn DA (1995) Modulatory actions of gamma aminobutyric acid (GABA) on GABA type A receptor subunit expression and function. J Neurosci Res 41:1–7

    Article  PubMed  CAS  Google Scholar 

  36. Meldrum BS, Brierley JB (1972) Neuronal loss and gliosis in the hippocampus following repetitive epileptic seizures induced in adolescent baboons by allylglycine. Brain Res 48:361–365

    Article  PubMed  CAS  Google Scholar 

  37. Dam M, Bolwig T, Hertz M, Bajorec J, Lomax P, Dam AM (1984) Does seizure activity produce Purkinje cell loss? Epilepsia 25:747–751

    Article  PubMed  CAS  Google Scholar 

  38. Druga R, Mares P, Otáhal J, Kubová H (2005) Degenerative neuronal changes in the rat thalamus induced by status epilepticus at different developmental stages. Epilepsy Res 63:43–65

    Article  PubMed  Google Scholar 

  39. Sabers A, Møller A, Scheel-Krüger J, Mouritzen Dam A (1996) No loss in total neuron number in the thalamic reticular nucleus and neocortex in the genetic absence epilepsy rats from Strasbourg. Epilepsy Res 26:45–48

    Article  PubMed  CAS  Google Scholar 

  40. Çavdar S, Hacıoğlu H, Şirvancı S, Keskinöz E, Onat F (2011) Synaptic organization of the rat thalamus: a quantitative study. Neurol Sci 32:1047–1056

    Article  PubMed  Google Scholar 

  41. Çavdar S, Hacıoğlu H, Yıldız SD, Onat F (2012) Do the quantitative relationships of synaptic junctions and terminals in the thalamus of genetic absence epilepsy rats from Strasbourg (GAERS) differ from those in normal control Wistar rats. Neurol Sci 33:241–249

    Article  Google Scholar 

  42. Kostopoulos GK (2001) Involvement of the thalamocortical system in epileptic loss of consciousness. Epilepsia 42:13–19

    Article  PubMed  Google Scholar 

  43. Avanzini G, Panzica F, de Curtis M (2000) The role of the thalamus in vigilance and epileptogenic mechanisms. Clin Neurophysiol 111:19–26

    Article  Google Scholar 

  44. Von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361–364

    Article  Google Scholar 

  45. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  PubMed  CAS  Google Scholar 

  46. Kim U, McCormick DA (1998) The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neurosci 18:9500–9516

    PubMed  CAS  Google Scholar 

  47. Blumenfeld H, McCormick DA (2000) Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J Neurosci 20:5153–5162

    PubMed  CAS  Google Scholar 

  48. Huguenard JR, McCormick DA (2007) Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci 30:350–356

    Article  PubMed  CAS  Google Scholar 

  49. Ilinsky IA, Kultas-Ilinsky K (1984) An autoradiographic study of topographical relationships between pallidal and cerebellar projections to the cat thalamus. Exp Brain Res 54:95–106

    Article  PubMed  CAS  Google Scholar 

  50. Balercia G, Kultas-Ilinsky K, Bentivoglio M, Ilinsky IA (1996) Neuronal and synaptic organization of the centromedian nucleus of the monkey thalamus: a quantitative ultrastructural study, with tract tracing and immunohistochemical observations. J Neurocytol 25:267–288

    Article  PubMed  CAS  Google Scholar 

  51. Ilinsky IA, Yi H, Kultas-Ilinsky K (1997) Mode of termination of pallidal afferents to the thalamus: a light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J Comp Neurol 386:601–612

    Article  PubMed  CAS  Google Scholar 

  52. Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 42:27–37

    Article  PubMed  CAS  Google Scholar 

  53. Houser CR, Vaughn JE, Barber RP, Robert E (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200:341–354

    Article  PubMed  CAS  Google Scholar 

  54. Spreafico R, Schmechel DE, Ellis LC, Rustioni A (1983) Cortical relay neurons and interneurons in the n. Ventralis posterolateralis of cats: ahorseradish peroxidase, electron-microscopic, golgi and immunocytochemical study. J Neurosci 3:491–509

    Google Scholar 

  55. Smith Y, Seguela P, Parent A (1987) Distribution of GABA-immunoreactive neurons in the thalamus of the squirrel monkey. J Neurosci 22:579–591

    Article  CAS  Google Scholar 

  56. Bentivoglio M, Spreafico R, Minciacchi D, Macchi G (1991) GABAergic interneurons and neuropil of the intralaminar thalamus: an immunohistochemical study in the rat and cat, with notes in the monkey. Exp Brain Res 87:85–95

    Article  PubMed  CAS  Google Scholar 

  57. Hunt CA, Pang DZ, Jones EG (1991) Distribution and density of GABA cells in intralaminar and adjacent nuclei of monkey thalamus. Neuroscience 43:185–196

    Article  PubMed  CAS  Google Scholar 

  58. Barthó P, Freund TF, Acsády L (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16:999–1014

    Article  PubMed  Google Scholar 

  59. Bokor H, Frére SGA, Eyre MD, Slézi A, Ulbert I, Acsády L (2005) Selective GABAergic control of higher-order thalamic relays. Neuron 6:929–940

    Article  Google Scholar 

  60. Lam YW, Sherman SM (2007) Different topography of the reticulothalamic inputs to first- and higher-order somatosensory thalamic relays revealed using photostimulation. J Neurophys 98:2903–2909

    Article  Google Scholar 

  61. Bodor AL, Giber K, Rovo Z, Ulbert I, Acsady L (2008) Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathways. J Neurosci 28:3090–3102

    Article  PubMed  CAS  Google Scholar 

  62. Liu Z, Vergnes M, Depaulis A, Marescaux C (1991) Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Res 545:1–7

    Article  PubMed  CAS  Google Scholar 

  63. Clemence AE, Mitrofanis J (1992) Cytoarchitectonic heterogeneities in the thalamic reticular nucleus of cats and ferrets. J Comp Neurol 322:167–180

    Article  PubMed  CAS  Google Scholar 

  64. Spreafico R, Battaglia G, Frassoni C (1991) The reticular thalamic nucleus (RTN) of the rat: cytoarchitectural, golgi, immunocytochemical, and horseradish peroxidase study. J Comp Neurol 340:478–490

    Article  Google Scholar 

  65. Gonzalo-Ruiz A, Sanz JM, Lieberman AR (1996) Immunohistochemical studies of localization and co-localization of glutamate, aspartate and GABA in the anterior thalamic nuclei, retrosplenial granular cortex, thalamic reticular nucleus and mammillary nuclei of the rat. J Chem Neuroanat 12:77–84

    Article  PubMed  CAS  Google Scholar 

  66. Oertel WH, Graybiel AM, Mugnaini E, Elde RP, Schmechel DE, Kopin IJ (1983) Coexistence of glutamic acid decarboxylase- and somatostatin-like immunoreactivity in neurons of the feline nucleus reticularis thalami. J Neurosci 3:1322–1332

    PubMed  CAS  Google Scholar 

  67. Nagaeva DV, Akhmadeev AV, Kalimullina LB (2006) Characteristics of small neurons of the reticular thalamic nucleus in WAG/Rij rats. Neurosci Behav Physiol 36:283–284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safiye Çavdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çavdar, S., Bay, H.H., Kirazlı, Ö. et al. Comparing GABAergic cell populations in the thalamic reticular nucleus of normal and genetic absence epilepsy rats from Strasbourg (GAERS). Neurol Sci 34, 1991–2000 (2013). https://doi.org/10.1007/s10072-013-1435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1435-4

Keywords

Navigation