Skip to main content
Log in

Investigation of the efficacy of daidzein in experimental knee osteoarthritis-induced with monosodium iodoacetate in rats

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Background

Osteoarthritis (OA) is a degenerative chronic illness that most frequently occurs in the knee joint. Daidzein (DZ) an isoflavone has anti-inflammatory and antioxidant activity. The aim of this study was to evaluate the effectiveness of DZ as a treatment for experimental knee OA (KOA) in rats.

Method

An experimental KOA model was induced by monosodium iodoacetate (MIA) in rats. Thereafter, 49 Wistar albino male rats (250–300 g, 12–16 weeks old) were randomly divided into 7 groups: C (healthy control); DC (KOA + saline); hyaluronic acid (HA); HA+ intraarticular (ia) DZ; oral (po) DZ; ia DZ; HA + po DZ groups. DZ and/or HA were administered intraarticularly to the rats as 50 μL on days 1, 7, 14, and 21. Alternatively, the DZ was administered orally as 0.5 mL twice daily for 21 days. After the treatment, rats were sacrificed by decapitation under general anesthesia. Serum samples were analyzed to determine the total oxidant status (TOS) and total antioxidant status (TAS) and the levels of TNF-α, IL-1β, MMP-13, and DZ. Knee joint samples underwent histopathological examination, and TNF-α, IL-1β, NOS2, and MMP-13 were analyzed with immunohistochemical methods.

Results

HA, DZ, and DZ + HA effectively reduced the levels of TNF-α, IL-1β, and MMP-13 in the serum of the DC group (p < 0.001). In groups that received HA, DZ, or DZ + HA, the serum TAS increased compared with the DC group (p < 0.05). When the DZ + HA combination was used, a more pronounced reduction in the levels of TNFα, NOS2, IL-1β, and MMP-13 was observed in knee joints. In addition, the cracks on the cartilage surface and fibrillation were completely improved in the groups that received HA, DZ, or DZ + HA compared with the DC group.

Conclusion

DZ had anti-inflammatory and antioxidant effects in a rat OA model. Therefore, DZ, as monotherapy or especially in combination with HA, may be a promising and beneficial therapy for OA.

Key Points

•DZ has been shown to reduce TNF-α, IL-1β, and MMP-13 both in serum and in tissue samples taken from the knee-joints.

•The cracks on the cartilage surface and fibrillation in KOA were completely improved by using DZ and DZ + HA combination.

•DZ may be useful to eliminate/reduce/ameliorate inflammation and oxidative damage in the pathogenesis of KOA.

•DZ, alone or in combination with HA, may be a promising natural compound with beneficial effects in the treatment of KOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DZ:

Daidzein

ECM:

Extracellular matrix

HA:

Hyalunoric acid

i.a.:

Intraarticular

IHC:

Immuno-histochemical

IL-1β:

Interleukin 1 beta

iNOS:

Inducable nitric oxide synthase

JNK:

c-Jun N-terminal kinase

KOA:

Knee osteoarthritis

LOD:

the limit of detection

LOQ:

Limit of quantification

MIA:

Monosodium iodoacetate

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor-κB

NO:

Nitric oxide

NOS-2:

Nitric oxide syntase-2

NSAIDs:

Non-steroidal anti-inflammatory drugs

OA:

Osteoarthritis

QC:

Quality control

ROS:

Reactive oxygen species

SPSS:

Statistical package for the social sciences

TAS:

Total antioxidant status

TNF-α:

Tumor necrosis factor-alpha

TOS:

Total oxidant status

References

  1. Pulsatelli L, Addimanda O, Brusi V, Pavloska B, Meliconi R (2013) New findings in osteoarthritis pathogenesis: therapeutic implications, therapeutic advances in chronic disease. 4(1):23–43

  2. Zhang Y, Jordan JM (2010) Epidemiology of osteoarthritis. Clin Geriatr Med 26(3):355–369

    Article  Google Scholar 

  3. Xia B, Chen D, Zhang J, Hu S, Jin H, Tong P (2014) Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 95(6):495–505

    Article  CAS  Google Scholar 

  4. Altay MA, Ertürk C, Bilge A, Yaptı M, Levent A, Aksoy N (2015) Evaluation of prolidase activity and oxidative status in patients with knee osteoarthritis: relationships with radiographic severity and clinical parameters. Rheumatol Int 35(10):1725–1731

    Article  CAS  Google Scholar 

  5. Mahdavi AM, Mahdavi R, Kolahi S, Zemestani M, Vatankhah A-M (2015) L-Carnitine supplementation improved clinical status without changing oxidative stress and lipid profile in women with knee osteoarthritis. Nutr Res 35(8):707–715

    Article  Google Scholar 

  6. Goldring MB, Otero M (2011) Inflammation in osteoarthritis. Curr Opin Rheumatol 23(5):471–478

    Article  CAS  Google Scholar 

  7. Malfait A-M (2016) Osteoarthritis year in review 2015: biology. Osteoarthr Cartil 24(1):21–26

    Article  CAS  Google Scholar 

  8. Lee H, Choi H-S, Park Y, Ahn CW, Jung SU, Park SH, Suh HJ (2014) Effects of deer bone extract on the expression of pro-inflammatory cytokine and cartilage-related genes in monosodium iodoacetate-induced osteoarthritic rats. Biosci Biotechnol Biochem 78(10):1703–1709

    Article  CAS  Google Scholar 

  9. Kim J, Xu M, Xo R, Mates A, Wilson G, Pearsall A IV, Grishko V (2010) Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthr Cartil 18(3):424–432

    Article  CAS  Google Scholar 

  10. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A (2007) Reactive oxygen species and superoxide dismutases: role in joint diseases. Joint Bone Spine 74(4):324–329

    Article  CAS  Google Scholar 

  11. Mongkhon J-M, Thach M, Shi Q, Fernandes JC, Fahmi H, Benderdour M (2014) Sorbitol-modified hyaluronic acid reduces oxidative stress, apoptosis and mediators of inflammation and catabolism in human osteoarthritic chondrocytes. Inflamm Res 63(8):691–701

    Article  CAS  Google Scholar 

  12. Yudoh K, van Trieu N, Nakamura H, Hongo-Masuko K, Kato T, Nishioka K (2005) Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 7(2):R380–R391

    Article  CAS  Google Scholar 

  13. Borzacchiello A, Mayol L, Schiavinato A, Ambrosio L (2010) Effect of hyaluronic acid amide derivative on equine synovial fluid viscoelasticity. J Biomed Mater Res A 92(3):1162–1170

    CAS  PubMed  Google Scholar 

  14. Ghosh P, Guidolin D (2002) Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent? Seminars in arthritis and rheumatism. Elsevier, pp 10–37

  15. Iozzo RV (1998) Matrix proteoglycans: from molecular design to cellular function, Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303–0139, USA

  16. Estades-Rubio FJ, Reyes-Martín A, Morales-Marcos V, García-Piriz M, García-Vera JJ, Perán M, Marchal JA, Montañez-Heredia E (2017) Knee viscosupplementation: cost-effectiveness analysis between stabilized hyaluronic acid in a single injection versus five injections of standard hyaluronic acid. Int J Mol Sci 18(3):658

    Article  Google Scholar 

  17. Campo GM, Avenoso A, Campo S, Ferlazzo AM, Altavilla D, Calatroni A (2003) Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats. Arthritis Res Ther 5(3):R122–R131

    Article  CAS  Google Scholar 

  18. Di Paola R, Fusco R, Impellizzeri D, Cordaro M, Britti D, Morittu VM, Evangelista M, Cuzzocrea S (2016) Adelmidrol, in combination with hyaluronic acid, displays increased anti-inflammatory and analgesic effects against monosodium iodoacetate-induced osteoarthritis in rats. Arthritis Res Ther 18(1):291

    Article  Google Scholar 

  19. Park JW, Yun Y-P, Park K, Lee JY, Kim H-J, Kim SE, Song H-R (2016) Ibuprofen-loaded porous microspheres suppressed the progression of monosodium iodoacetate-induced osteoarthritis in a rat model. Colloids Surf B: Biointerfaces 147:265–273

    Article  CAS  Google Scholar 

  20. Ahmad S, Alam K, Hossain MM, Fatima M, Firdaus F, Zafeer MF, Arif Z, Ahmed M, Nafees K (2016) Anti-arthritogenic and cardioprotective action of hesperidin and daidzein in collagen-induced rheumatoid arthritis. Mol Cell Biochem 423(1–2):115–127

    Article  CAS  Google Scholar 

  21. Gong P, Madak-Erdogan Z, Flaws JA, Shapiro DJ, Katzenellenbogen JA, Katzenellenbogen BS (2016) Estrogen receptor-α and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Mol Cell Endocrinol 437:190–200

    Article  CAS  Google Scholar 

  22. Kładna A, Berczyński P, Kruk I, Piechowska T, Aboul-Enein HY (2016) Studies on the antioxidant properties of some phytoestrogens. Luminescence 31(6):1201–1206

    Article  Google Scholar 

  23. Röhrdanz E, Ohler S, Tran-Thi Q-H, Kahl R (2002) The phytoestrogen daidzein affects the antioxidant enzyme system of rat hepatoma H4IIE cells. J Nutr 132(3):370–375

    Article  Google Scholar 

  24. Rüfer CE, Kulling SE (2006) Antioxidant activity of isoflavones and their major metabolites using different in vitro assays. J Agric Food Chem 54(8):2926–2931

    Article  Google Scholar 

  25. Hämäläinen M, Nieminen R, Vuorela P, Heinonen M, Moilanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediat Inflamm

  26. Rimbach G, De Pascual-Teresa S, Ewins B, Matsugo S, Uchida Y, Minihane A-M, Turner R, Vafei Adou K, Weinberg P (2003) Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 33(9):913–925

    Article  CAS  Google Scholar 

  27. Mohammad-Shahi M, Haidari F, Rashidi B, Saei AA, Mahboob S, Rashidi M-R (2011) Comparison of the effects of genistein and daidzein with dexamethasone and soy protein on rheumatoid arthritis in rats. BioImpacts 1(3):161–170

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakamoto Y, Kanatsu J, Toh M, Naka A, Kondo K, Iida K (2016) The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through PPARα/γ and JNK pathways in adipocyte and macrophage co-cultures. PLoS One 11(2):e0149676

    Article  Google Scholar 

  29. Hodgson JM, Croft KD, Puddey IB, Mori TA, Beilin LJ (1996) Soybean isoflavonoids and their metabolic products inhibit in vitro lipoprotein oxidation in serum. J Nutr Biochem 7(12):664–669

    Article  CAS  Google Scholar 

  30. Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37(2):112–119

    Article  CAS  Google Scholar 

  31. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111

    Article  CAS  Google Scholar 

  32. Guideline IHT (2005) Validation of analytical procedures: text and methodology Q2 (R1). International conference on harmonization, Geneva, pp 11–12

    Google Scholar 

  33. Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28(1):5–15

    Article  Google Scholar 

  34. E. Cesare Paul, S.B. Abramson, Osteoartrit Patogenezi; Dinçer F, editör. Kelley Romatoloji Ankara: Güneş Kitapevi (2006) 1493–1513

  35. Lepetsos P, Papavassiliou AG (2016) ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta (BBA) Mol Basis Dis 1862(4):576–591

    Article  CAS  Google Scholar 

  36. Conde J, Scotece M, Gomez R, Lopez V, Gomez-Reino JJ, Gualillo O (2011) Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011

  37. Oh H, Kwak J-S, Yang S, Gong M-K, Kim J-H, Rhee J, Kim S, Kim H-E, Ryu J-H, Chun J-S (2015) Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD+-SIRT axis in articular chondrocytes is involved in osteoarthritis. Osteoarthr Cartil 23(12):2288–2296

    Article  CAS  Google Scholar 

  38. More AS, Kumari RR, Gupta G, Lingaraju MC, Balaganur V, Pathak NN, Kumar D, Kumar D, Sharma AK, Tandan SK (2013) Effect of iNOS inhibitor S-methylisothiourea in monosodium iodoacetate-induced osteoathritic pain: implication for osteoarthritis therapy. Pharmacol Biochem Behav 103(4):764–772

    Article  CAS  Google Scholar 

  39. Mohamad-Shahi M, Karandish M, Haidari F, Omidian K, Fatemi-Tabatabayei S-R, Rafiei H (2012) Effect of daidzein-low-calorie diet on body weight, serum levels of glucose, resistin, and high sensitive C-reactive protein in high fat, high calorie diet induced rats. Saudi Med J 33(1):70–75

    PubMed  Google Scholar 

  40. Bhatti F, Mehmood A, Latief N, Zahra S, Cho H, Khan S, Riazuddin S (2017) Vitamin E protects rat mesenchymal stem cells against hydrogen peroxide-induced oxidative stress in vitro and improves their therapeutic potential in surgically-induced rat model of osteoarthritis. Osteoarthr Cartil 25(2):321–331

    Article  CAS  Google Scholar 

  41. Davies CM, Guilak F, Weinberg JB, Fermor B (2008) Reactive nitrogen and oxygen species in interleukin-1-mediated DNA damage associated with osteoarthritis. Osteoarthr Cartil 16(5):624–630

    Article  CAS  Google Scholar 

  42. Fermor B, Christensen S, Youn I, Cernanec J, Davies C, Weinberg J (2007) Oxygen, nitric oxide and articular cartilage. Eur Cell Mater 13(11):56–65

    Article  CAS  Google Scholar 

  43. Henrotin Y, Deby-Dupont G, Deby C, Franchimont P, Emerit I (1992) Active oxygen species, articular inflammation and cartilage damage, free radicals and aging. Springer, pp 308–322

  44. Choi EJ, Kim G-H (2009) Hepatoprotective effects of daidzein against 7, 12-dimetylbenz [a] anthracene-induced oxidative stress in mice. Int J Mol Med 23(5):659–664

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Ataturk University Scientific Research Projects Coordination Unit with project numbers TCD-2018-6146.

Author information

Authors and Affiliations

Authors

Contributions

GG, MC, FDM, and KG designed the study. GG, KG, and SYT performed experimental studies. The laboratory studies were performed by GG, FDM, SYT, and MA. Histopathological studies were performed by TD and MA. GG, FDM, MC, and TD analyzed the data and interpreted the results. GG, MC, and FDM wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gulsah Gundogdu.

Ethics declarations

Disclosures

None.

Ethical approval

This study was conducted with the approval of the Ataturk University Ethics Committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundogdu, G., Demirkaya Miloglu, F., Gundogdu, K. et al. Investigation of the efficacy of daidzein in experimental knee osteoarthritis-induced with monosodium iodoacetate in rats. Clin Rheumatol 39, 2399–2408 (2020). https://doi.org/10.1007/s10067-020-04958-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-020-04958-z

Keywords

Navigation