Skip to main content

Advertisement

Log in

Ankylosing spondylitis monocyte-derived macrophages express increased level of A2A adenosine receptor and decreased level of ectonucleoside triphosphate diphosphohydrolase-1 (CD39), A1 and A2B adenosine receptors

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Macrophages play an important role in the ankylosing spondylitis (AS) auto-inflammatory responses and fibrocartilage destruction. Adenosine is a key modulator of inflammatory conditions. The various effects of adenosine are mediated by its interaction with adenosine receptors (AR). In this study, we investigated the mRNA expression of A1, A2A, A2B, and A3 adenosine receptors, ectonucleoside triphosphate diphosphohydrolase-1 (CD39), and ecto-5′-nucleotidase (CD73) in the monocyte-derived macrophages from AS patients in comparison to healthy controls. We also explored the correlation between analyzed gene expression and patients’ clinical manifestations. Whole blood-separated monocytes from 23 healthy controls and 23 active AS patients were stimulated by macrophage colony-stimulating factor (M-CSF) for 7 days and differentiated to macrophages. Monocyte and macrophage markers were analyzed by flow cytometry. Analysis of adenosine receptors (ADORA1، ADORA2A، ADORA2B، ADORA3), CD39 and CD73 gene expression was performed by SYBR green real-time PCR. Our results demonstrated monocyte-derived macrophages from AS patients expressed increased level of A2AAR and reduced level of A1, A2BAR, and CD39 mRNA compared to healthy controls. We found an inverse correlation between A2AAR mRNA expression and Bath Ankylosing Spondylitis Functional Index (BASFI) score in AS patients. According to our results, altered expression level of adenosine-relying system would be involved in AS macrophage dysfunction and inflammation and correlated with functional status in AS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369:1379–1390. https://doi.org/10.1016/S0140-6736(07)60635-7

    Article  PubMed  Google Scholar 

  2. Tam LS, Gu J, Yu D (2010) Pathogenesis of ankylosing spondylitis. Nat Rev Rheumatol 6:399–405. https://doi.org/10.1038/nrrheum.2010.79

    Article  PubMed  Google Scholar 

  3. Rudwaleit M, Baeten D (2006) Ankylosing spondylitis and bowel disease. Best Pract Res Clin Rheumatol 20:451–471. https://doi.org/10.1016/j.berh.2006.03.010

    Article  PubMed  Google Scholar 

  4. Heuft-Dorenbosch L, Spoorenberg A, van Tubergen A, Landewe R, van ver Tempel H, Mielants H, Dougados M, van der Heijde D (2003) Assessment of enthesitis in ankylosing spondylitis. Ann Rheum Dis 62:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henderson C, Davis JC (2006) Drug insight: anti-tumor-necrosis-factor therapy for ankylosing spondylitis. Nat Clin Pract Rheumatol 2:211–218. https://doi.org/10.1038/ncprheum0157

    Article  CAS  PubMed  Google Scholar 

  6. Coates LC, Marzo-Ortega H, Bennett AN, Emery P (2010) Anti-TNF therapy in ankylosing spondylitis: insights for the clinician. Ther Adv Musculoskelet Dis 2:37–43. https://doi.org/10.1177/1759720X09359728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286

    Article  CAS  PubMed  Google Scholar 

  8. Laria A, Lurati A, Marrazza M, Mazzocchi D, Re KA, Scarpellini M (2016) The macrophages in rheumatic diseases. J Inflamm Res 9:1–11. https://doi.org/10.2147/JIR.S82320

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Melis L, Elewaut D (2009) Progress in spondylarthritis. Immunopathogenesis of spondyloarthritis: which cells drive disease? Arthritis Res Ther 11:233. https://doi.org/10.1186/ar2722

    Article  PubMed  PubMed Central  Google Scholar 

  10. McGonagle D, Marzo-Ortega H, O'Connor P, Gibbon W, Hawkey P, Henshaw K, Emery P (2002) Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis 61:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baeten D, De Keyser F (2004) The histopathology of spondyloarthropathy. Curr Mol Med 4:1–12

    Article  CAS  PubMed  Google Scholar 

  12. Bollow M, Fischer T, Reisshauer H, Backhaus M, Sieper J, Hamm B, Braun J (2000) Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis—cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann Rheum Dis 59:135–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39

    Article  CAS  PubMed  Google Scholar 

  14. Cronstein BN, Sitkovsky M (2017) Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 13:41–51. https://doi.org/10.1038/nrrheum.2016.178

    Article  CAS  PubMed  Google Scholar 

  15. Hasko G, Pacher P (2012) Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol 32:865–869. https://doi.org/10.1161/ATVBAHA.111.226852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buenestado A, Grassin Delyle S, Arnould I, Besnard F, Naline E, Blouquit-Laye S, Chapelier A, Bellamy JF, Devillier P (2010) The role of adenosine receptors in regulating production of tumour necrosis factor-alpha and chemokines by human lung macrophages. Br J Pharmacol 159:1304–1311. https://doi.org/10.1111/j.1476-5381.2009.00614.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hasko G, Deitch EA, Szabo C, Nemeth ZH, Vizi ES (2002) Adenosine: a potential mediator of immunosuppression in multiple organ failure. Curr Opin Pharmacol 2:440–444

    Article  CAS  PubMed  Google Scholar 

  18. Majumdar S, Aggarwal BB (2003) Adenosine suppresses activation of nuclear factor-kappaB selectively induced by tumor necrosis factor in different cell types. Oncogene 22:1206–1218. https://doi.org/10.1038/sj.onc.1206184

    Article  CAS  PubMed  Google Scholar 

  19. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770. https://doi.org/10.1038/nrd2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasko G, Kuhel DG, Chen JF, Schwarzschild MA, Deitch EA, Mabley JG, Marton A, Szabo C (2000) Adenosine inhibits IL-12 and TNF-[alpha] production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 14:2065–2074. https://doi.org/10.1096/fj.99-0508com

    Article  CAS  PubMed  Google Scholar 

  21. Kreckler LM, Wan TC, Ge ZD, Auchampach JA (2006) Adenosine inhibits tumor necrosis factor-alpha release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther 317:172–180. https://doi.org/10.1124/jpet.105.096016

    Article  CAS  PubMed  Google Scholar 

  22. Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J Pharmacol Exp Ther 324:694–700. https://doi.org/10.1124/jpet.107.131540

    Article  CAS  PubMed  Google Scholar 

  23. Le Vraux V, Chen YL, Masson I, De Sousa M, Giroud JP, Florentin I, Chauvelot-Moachon L (1993) Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci 52:1917–1924

    Article  PubMed  Google Scholar 

  24. Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS (1996) Inhibition of TNF-alpha expression by adenosine: role of A3 adenosine receptors. J Immunol 156:3435–3442

    CAS  PubMed  Google Scholar 

  25. Blackburn MR, Vance CO, Morschl E, Wilson CN (2009) Adenosine receptors and inflammation. Handb Exp Pharmacol:215–269. https://doi.org/10.1007/978-3-540-89615-9_8

  26. Fredholm BB (2007) Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ 14:1315–1323. https://doi.org/10.1038/sj.cdd.4402132

    Article  CAS  PubMed  Google Scholar 

  27. Hasko G, Cronstein B (2013) Regulation of inflammation by adenosine. Front Immunol 4:85. https://doi.org/10.3389/fimmu.2013.00085

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694. https://doi.org/10.1016/j.bbamcr.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  29. Jacob F, Perez Novo C, Bachert C, Van Crombruggen K (2013) Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses. Purinergic Signal 9:285–306. https://doi.org/10.1007/s11302-013-9357-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367. https://doi.org/10.1016/j.molmed.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192. https://doi.org/10.1038/nri.2016.4

    Article  CAS  PubMed  Google Scholar 

  32. Ravani A, Vincenzi F, Bortoluzzi A, Padovan M, Pasquini S, Gessi S, Merighi S, Borea PA, Govoni M, Varani K (2017) Role and function of A2A and A(3) adenosine receptors in patients with ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. Int J Mol Sci 18. https://doi.org/10.3390/ijms18040697

  33. van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria Arthritis Rheum 27:361–368

    PubMed  Google Scholar 

  34. Bortoluzzi A, Vincenzi F, Govoni M, Padovan M, Ravani A, Borea PA, Varani K (2016) A2A adenosine receptor upregulation correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Res Ther 18:192. https://doi.org/10.1186/s13075-016-1089-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ochaion A, Bar-Yehuda S, Cohen S, Barer F, Patoka R, Amital H, Reitblat T, Reitblat A, Ophir J, Konfino I, Chowers Y, Ben-Horin S, Fishman P (2009) The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn's disease. Cell Immunol 258:115–122. https://doi.org/10.1016/j.cellimm.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  36. Varani K, Padovan M, Vincenzi F, Targa M, Trotta F, Govoni M, Borea PA (2011) A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 13:R197. https://doi.org/10.1186/ar3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mediero A, Perez-Aso M, Cronstein BN (2013) Activation of adenosine A(2A) receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFkappaB nuclear translocation. Br J Pharmacol 169:1372–1388. https://doi.org/10.1111/bph.12227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matyash M, Zabiegalov O, Wendt S, Matyash V, Kettenmann H (2017) The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS One 12:e0175012. https://doi.org/10.1371/journal.pone.0175012

    Article  PubMed  PubMed Central  Google Scholar 

  39. Loza MJ, Anderson AS, O'Rourke KS, Wood J, Khan IU (2011) T-cell specific defect in expression of the NTPDase CD39 as a biomarker for lupus. Cell Immunol 271:110–117. https://doi.org/10.1016/j.cellimm.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herrath J, Chemin K, Albrecht I, Catrina AI, Malmstrom V (2014) Surface expression of CD39 identifies an enriched Treg-cell subset in the rheumatic joint, which does not suppress IL-17A secretion. Eur J Immunol 44:2979–2989. https://doi.org/10.1002/eji.201344140

    Article  CAS  PubMed  Google Scholar 

  41. Guo H, Zheng M, Zhang K, Yang F, Zhang X, Han Q, Chen ZN, Zhu P (2016) Functional defects in CD4+ CD25high FoxP3+ regulatory cells in ankylosing spondylitis. Sci Rep 6:37559. https://doi.org/10.1038/srep37559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moncrieffe H, Nistala K, Kamhieh Y, Evans J, Eddaoudi A, Eaton S, Wedderburn LR (2010) High expression of the ectonucleotidase CD39 on T cells from the inflamed site identifies two distinct populations, one regulatory and one memory T cell population. J Immunol 185:134–143. https://doi.org/10.4049/jimmunol.0803474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all participants for their collaboration.

Funding

This work has been supported by a research grant from Tehran University of Medical Sciences (TUMS); grant no. 95-04-41-33869.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Jalal Zargar or Ahmadreza Jamshidi.

Ethics declarations

Disclosures

None.

Electronic supplementary material

Supplementary Fig. 1

Flow cytometry analysis of CD14 expression on the cell surface of isolated monocyte. Histograms of PBMC-isolated monocyte staining with PE-conjugated anti-CD14 and isotype control antibodies. The results showed that monocytes were isolated by positive selection with 92–95% purity (GIF 21 kb)

High Resolution Image (TIFF 1213 kb)

Supplementary Fig. 2

Flow cytometry analysis of the cell surface macrophage markers CD163 and CD206. Histograms of monocyte-derived macrophage staining with a) FITC-conjugated anti-CD163 b) PE-conjugated anti-CD206, and appropriate isotype control antibodies. Results showed that Monocyte-derived macrophages with 7 days’ stimulation by M-CSF were a) 97% CD163 positive and b) 95% CD206 positive (GIF 17 kb)

High Resolution Image (TIFF 675 kb)

Supplementary Fig. 3

There was not significant differences in a) A3AR and b) CD73 enzyme mRNA expression in monocyte-derived macrophages between AS patients and healthy controls. Isolated monocytes from 23 AS patients and 23 healthy donors were differentiated to macrophages with M-CSF. The expression was analyzed in monocyte-generated macrophages by real-time PCR and normalized to GAPDH. Data are expressed as the means ± SD (GIF 22 kb)

High Resolution Image (TIFF 12531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtari, M., Zargar, S.J., Mahmoudi, M. et al. Ankylosing spondylitis monocyte-derived macrophages express increased level of A2A adenosine receptor and decreased level of ectonucleoside triphosphate diphosphohydrolase-1 (CD39), A1 and A2B adenosine receptors. Clin Rheumatol 37, 1589–1595 (2018). https://doi.org/10.1007/s10067-018-4055-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-018-4055-9

Keywords

Navigation