Skip to main content

Advertisement

Log in

Relevant geological-geotechnical parameters to evaluate the terrain susceptibility for shallow landslides: Nova Friburgo, Rio de Janeiro, Brazil

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This study aims to contribute to the analysis and classification methodology of geological derivation information regarding the detailed zoning of terrain susceptibility to the occurrence of shallow landslides. A geological-geotechnical classification model for the Córrego D’Antas basin (53 km2) was proposed from a geological map (1:10,000). The analysis was based on a set of data built through field investigations and laboratory experiments, later submitted to statistical treatment. Thirty samples were collected from five lithological units and then classified according to the type of material (COL, colluvium; MRS, mature residual soil; YRS, young residual soil) about the following geotechnical parameters: (i) particle size distribution, (ii) Atterberg limits, (iii) stability of aggregates, (iv) void index, (v) dry unit weight, (vi) in situ saturated hydraulic conductivity, (vii) effective cohesion, and (viii) internal effective friction angle. The results allowed the definition of the behavior of the types of materials and the division of the lithological units into three geological-geotechnical units: (i) unit I—gabbro, (ii) unit II—equigranular granite, (iii) unit III—diorite, granodiorite granite, and orthogneiss. These geological-geotechnical units showed a good correlation with the critical classes for landslides related to hydro-geomorphological conditions, vegetation and land use, and slope angle (> 30°). The proposed classification represents an advance in the understanding of geotechnical parameters that are part of the prediction of models of terrain susceptibility to shallow landslides from the geo-hydroecological approach. In addition, it provides an input database for physics-based model predictions in mountainous region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AGS (2000) Landslide risk management concepts and guidelines. Australian Geomechanics Society. Aust Geomech 35(1):49–92

    Google Scholar 

  • AGS (2007) Guidelines for landslide susceptibility, hazard and risk zoning for land use management. Australian Geomechanics Society Landslide Taskforce Landslide Zoning Working Group. Aust Geomech 42(1):13–26

    Google Scholar 

  • Ahukaemere CM, Obasi SN, Agim LC, Egwuonwu KK (2020) Evaluation of aggregate stability and geotechnical properties of soils derived from dissimilar shaley lithological materials in selected locations of Southeastern Nigeria. Model Simul Mat Sci Eng 5:25–35. https://doi.org/10.20448/808.5.1.25.35

    Article  Google Scholar 

  • Akgun A (2011) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir. Turkey Landslides 9(1):93–106. https://doi.org/10.1007/s10346-011-0283-7

    Article  Google Scholar 

  • Akgun H, Türkmenoğlu AG, Kelam AA, Yousefi-Bavil K, Öner G, Koçkar MK (2017) Assessment of the effect of mineralogy on the geotechnical parameters of clayey soils: a case study for the Orta County, Çankırı, Turkey. Appl Clay Sci 164:44–53. https://doi.org/10.1016/j.clay.2017.08.029

    Article  Google Scholar 

  • Amoozegar A, Warrick AW (1986) Hydraulic conductivity of saturated soils: field methods. In A. Klute (ed.), Methods of soil analysis, part i: physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA, CSSA, and SSSA, Madison, WI pp. 735–770

  • Amoozegar A (1989a) A compact constant-head permeameter for measuring saturated hydraulic conductivity of the vadose zone. Soil Sci Soc Am J 53(5):1356. https://doi.org/10.2136/sssaj1989.03615995005300050009x

    Article  Google Scholar 

  • Amoozegar A (1989b) Comparison of the glover solution with the simultaneous-equations approach for measuring hydraulic conductivity. Soil Sci Soc Am J 53(5):1362. https://doi.org/10.2136/sssaj1989.0361599500530005001

    Article  Google Scholar 

  • Amoozegar A, Wilson GV (1999) Methods for measuring hydraulic conductivity and drainable porosity. In R.W. Skaggs and J. van Schilfgaarde (eds.), Agricultural drainage. Agron. No. 38 Madison, WI. Soil Sci Soc Am pp. 1149–1205

  • ASTM D-2487-98 (1998) Standard practice for classification of soils for engineering purposes. American Society for Testing and Materials USA

  • Avelar AS, Coelho Netto AL, Lacerda WA, Becker LB, Mendonça MB (2013) Mechanisms of the recent catastrophic landslides in the mountainous range of Rio de Janeiro, Brazil. Landslide Science and Practice: Glob Environ Change 4:265–270. https://doi.org/10.1007/978-3-642-31337-0-34

    Article  Google Scholar 

  • Avelar AS,Vinagre R, Lacerda WA (2016) Influências Geológicas, Geomorfológicas e Geotecnicas Geotécnicas nos Movimentos de Massa ocorridos nos dias 11 e 12 de janeiro de 2011, em Nova Friburgo, Rio de Janeiro, Brasil. In: Proceedings of 15CNG/8BG, Porto, Portugal

  • Berhane G, Walraevens K (2012) Geological and geotechnical constraints for urban planning and natural environment protection: a case study from Mekelle City Northern Ethiopia. Environ Earth Sci 69. https://doi.org/10.1007/s12665-012-1963-x

  • Besalatpour AA, Ayoubi S, Hajabbasi MA, Mosaddeghi MR, Schulin R (2013) Estimating wet soil aggregate stability from easily available properties in a highly mountainous watershed. CATENA 111:72–79. https://doi.org/10.1016/j.catena.2013.07.001

    Article  Google Scholar 

  • Bicocchi G, Tofani V, D’Ambrosio M et al (2019) Geotechnical and hydrological characterization of hillslope deposits for regional landslide prediction modeling. Bull Eng Geol Environ 78:4875–4891. https://doi.org/10.1007/s10064-018-01449-z

    Article  Google Scholar 

  • Bigarella JJ, Mousinho MR, Silva JX (1965) Processes and environments of the brazilian quaternary. Imprensa da Universidade Federal do Paraná, Curitiba, p 69

    Google Scholar 

  • Boix-Fayos C, Calvo-Cases A, Imeson A, Soriano-Soto MD (2001) Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena 44:47–67. https://doi.org/10.1016/S0341-8162(00)00176-4

    Article  Google Scholar 

  • Borgomeo E, Hebditch KV, Whittaker AC, Lonergan L (2014) Characterising the spatial distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy. Geomorphology 226:148–161. https://doi.org/10.1016/j.geomorph.2014.08

    Article  Google Scholar 

  • Camarinha PIM, Canavesi V, Alvalá RCS (2014) Shallow landslide prediction and analysis with risk assessment using a spatial model in a coastal region in the state of São Paulo, Brazil. Nat Hazards Earth Syst Sci 14:2449–2468. https://doi.org/10.5194/nhess-14-2449-2014

    Article  Google Scholar 

  • Casagli N, Dapporto S, Ibsen ML, Tofani V, Vannocci P (2005) Analysis of the landslide triggering mechanism during the storm of 20th–21st November 2000 Northern Tuscany. Landslides 3(1):13–21. https://doi.org/10.1007/s10346-005-0007-y

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2:329–342. https://doi.org/10.1007/2Fs10346-005-0021-0

    Article  Google Scholar 

  • Catani F, Lagomarsino D, Segoni S, Tofani V (2013) Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci 13:2815–2831. https://doi.org/10.5194/nhess-13-2815-2013

    Article  Google Scholar 

  • Cevasco A, Pepe G, Brandolini P (2013) The influences of geological and land use settings on shallow landslides triggered by an intense rainfall event in a coastal terraced environment. Bull Eng Geol Environ 73(3):859–875. https://doi.org/10.1007/s10064-013-0544-x

    Article  Google Scholar 

  • Coelho Netto AL (1985) Surface hydrology and soil erosion in a tropical mountainous rainforest drainage basin. de Janeiro R Ph.D. Thesis, Katholieke University Leuven, Belgium

  • Coelho Netto AL, Avelar AS, Fernandez MC, Lacerda WA (2007) Landslide susceptibility in a mountainous geoecosystem, Tijuca Massif, Rio de Janeiro: the role of morphometric subdivision of the terrain. Geomorphology 87(3):120–131. https://doi.org/10.1016/j.geomorph.2006.03.0

    Article  Google Scholar 

  • Coelho Netto AL, Avelar AS, Fernandes MC, Coutinho B, Freitas L (2008) Technical Report on Environmental Quality of Rio de Janeiro state (1:100,000): subsidies for the economic-ecological zoning. Environmental Secretariat of Rio de Janeiro State Government

  • Coelho Netto AL, Avelar AS, Sato AM, Fernades MC, Oliveira RR, Vinagre RV, Barbosa L, Lima PH, Lacerda WA (2014) Landslides susceptibility and risk zoning at Angra dos Reis, Rio de Janeiro State, Southeast-Brazil: a qualiquantitative approach at 1,5000 scale. In: Extreme rainfal induced landslides: an international perspective. São Paulo, Oficina de Textos, Vol. 1 263 - 296p

  • Coelho Netto AL, Sato A, Avelar A, Vianna LG, Araújo I, Ferreira D, Lima P, Silva A, Silva RP (2013) January 2011: the extreme landslide disaster in Brazil. https://doi.org/10.1007/978-3-642-31319-6_51

  • Coelho Netto AL, Silva RP, Facadio AC, Lima PH (2016) Movimentos gravitacionais de massa e evolução das encostas montanhosas em regiões tropicais: estudos em Nova Friburgo, RJ. In: Willy Lacerda: doutor no saber e na arte de viver. COPPE-UFRJ. Rio de Janeiro: Outras Letras p. 235–241

  • Coelho Netto AL, Facadio AC, Silva RP (2020) Geomorfologia do Estado do Rio de Janeiro e zona de fronteira: uma abordagem geo-hidroecológica. In: Dantas ME et al (Org.) Geodiversidade do Estado do Rio de Janeiro - Programa Geologia do Brasil - Levantamentos da Geodiversidade. 1ed.Rio de Janeiro: Serviço Geológico do Brasil. CPRM 1:125–186

  • Corominas J, Van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S et al (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Coutinho BH (2015) Indicadores geo-hidroecológicos de suscetibilidade das encostas frente a erosão e movimentos de massa em região montanhosa tropical úmida: suporte metodológico para zoneamentos de riscos em diferentes escalas de análise especial. 158 p. Junior Postdoctoral Project (PDJ/CNPq). Federal University of Rio de Janeiro, Rio de Janeiro

  • Dai F, Lee C (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228. https://doi.org/10.1016/s0169-555x(01)00087

  • Dantas ME (2000) Geomorfologia do Estado do Rio de Janeiro. Brasília: CPRM, 2000. Projeto Rio de Janeiro; Estudo Geoambiental do Rio de Janeiro

  • De Ploey Y, Cruz O (1979) Landslides in the Serra do Mar, Brazil. Catena, Berlin 6(2):111–122

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102(3–4):85–98. https://doi.org/10.1016/j.enggeo.2008.03.022

    Article  Google Scholar 

  • Fraga JS, Silva IM, Amorim TA, Oliveira RR, Coelho Netto AL (2015) Florestas secundárias de diferentes idades e a estabilidade de encostas em Nova Friburgo (Estado do Rio de Janeiro, Brasil). Pesquisas Botânica, São Leopoldo 68:287–309

    Google Scholar 

  • Gerscovich DMS, Vargas EA, Campos TMP (2006) On the evaluation of unsaturated flow in a natural slope in Rio de Janeiro, Brazil. Eng Geol 191:48–60. https://doi.org/10.1016/j.enggeo.2006.07.008

  • Gomes MCV, Vieira BC (2016) Saturated hydraulic conductivity of soils in a shallow landslide area in the Serra do Mar, São Paulo. Brazil Zeitschrift Für Geomorphologie 60(1):53–65. https://doi.org/10.1127/zfg/2016/0229

    Article  Google Scholar 

  • Guidicini G, Nieble CM (1984) Estabilidade de taludes naturais e de Escavação. 2º Edição. São Paulo. Edgard Blücher 194 p.

  • Guillard C, Zezere J (2012) Landslide susceptibility assessment and validation in the framework of municipal planning in Portugal: the case of Loures municipality. Environ Manage 50:721–735. https://doi.org/10.1007/s00267-012-9921-7

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1–4):181–216. https://doi.org/10.1016/s0169-555x(99)00078-1

  • Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107. https://doi.org/10.1016/s0013-7952(00)00047-8

  • Heilbron M, Machado N (2003) Timing of terrane accretion in the Neoproterozoic–Eopaleozoic Ribeira orogen (se Brazil). Precambrian Res 125(1–2):87–112. https://doi.org/10.1016/s0301-9268(03)00082

    Article  Google Scholar 

  • Jones FO (1973) Landslides of Rio de Janeiro and the Serra das Araras Escarpment, Brazil, US Geological Survey. Prof Paper 697:42

  • Keller E, Devecchio D (2012) Natural hazards – Earth’s processes as hazards, disasters and catastrophes. 3ª edition

  • Kumar A, Asthana A, Priyanka RS, Jayangondaperumal R et al (2017) Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology 284:72–87. https://doi.org/10.1016/j.geomorph.2017.01.0

    Article  Google Scholar 

  • Lacerda WA, Sandroni S (1985) Movimentos de massas Coluviais, Mesa Redonda Sobre Aspectos Geotécnicos de encostas. Tema III, Rio de Janeiro pp. 1–19

  • Lacerda WA, Silveira GC (1992) Características de resistência ao cisalhamento e de compressibilidade dos Solos Residuais e Coluvionares da Encosta do Soberbo, RJ. In: 1º COBRAE, Rio de Janeiro. Anais: ABMS 2:445–461

  • Lacerda WA, Ehrlich M, Santos Jr OF (1997) Efeito das variações de poro-pressão sobre a estabilidade de encostas em solos residuais. – In: 2a Conferência Brasileira sobre Estabilidade de Encostas – COBRAE & 2nd PanAmerican Symposium on Landslides, Rio de Janeiro 1:381–388

  • Lacerda WA, Avelar AS (2003) Flume tests on sand subjected to seepage with the influence of hidden barriers. Proc. International Workshop on Occurrences and Mech. of Flows in Natural Slopes and Earthfill. Florença 1:136–144

    Google Scholar 

  • Lacerda WA (2004) The behavior of colluvial slopes in a tropical environment. Proc. Intern. Symp.on Landslides: evaluation and stabilization. Rio De Janeiro, Brazil 2:1315–1342

    Google Scholar 

  • Lacerda WA (2007) Landslide initiation in saprolite and colluvium in southern Brazil: Field and laboratory observations. Geomorphology, 87(3), 104–119. https://doi.org/10.1016/j.geomorph.2006.03.03

  • Lacerda, WA (2014) A suggested shallow slide mechanism of accidents in the região serrana of the state of Rio de Janeiro. In: Lacerda, W, Palmeira, E, Coelho Netto, AL, Ehrlich, M (Org.). 1ed.São Paulo: Oficina de Textos 1:128–140

  • Lacerda WA, Coelho AL, Sato A (2016) Technical report on landslide related disasters in Brazil. https://doi.org/10.1201/9781315387789-4

  • Listo F, Vieira B (2012) Mapping of risk and susceptibility of shallow-landslide in the city of São Paulo. Brazil Geomorphology 169–170(30):44. https://doi.org/10.1016/j.geomorph.2012.01.010

    Article  Google Scholar 

  • Lorentz J, Calijuri ML, Marques EA, Baptista A (2016) Multicriteria analysis applied to landslide susceptibility mapping. Nat Hazards 83:41–52. https://doi.org/10.1007/s11069-016-2300-6

    Article  Google Scholar 

  • Manzo G, Tofani V, Segoni S, Battistini A, Catani F (2013) GIS techniques for regional scale landslide susceptibility assessment: the Sicily (Italy) case study. Int J Georg Inf Syst 27(7):1433–1452. https://doi.org/10.1080/13658816.2012.693614

  • Martha TR, Roy P, Govindharaj KB, Kumar KV, Diwakar PG, Dadhwal VK (2014) Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state, India. Landslides 12(1):135–146. https://doi.org/10.1007/s10346-014-0540-7

  • Matsushi Y, Hattanji T, Matsukura Y (2006) Mechanisms of shallow landslides on soil-mantled hillslopes with permeable and impermeable bedrocks in the Boso Peninsula, Japan. Geomorphology 76:92–108. https://doi.org/10.1016/j.geomorph.2005.10.003

  • Meis MR, Silva JX (1968) Considerações geomorfológicas a propósito dos movimentos de massa ocorridos no Rio de Janeiro. Rev Bras Geogr 30:55–72

    Google Scholar 

  • Meisina C (2006) Characterisation of weathered clayey soils responsible for shallow landslides. Nat Hazard 6(5):825–838. https://doi.org/10.5194/nhess-6-825-2006

    Article  Google Scholar 

  • Nguyen H T, Wiatr T, Fernández-Steeger TM, Reicherter K, Rodrigues DMM, Azzam R (2012) Landslide hazard and cascading effects following the extreme rainfall event on Madeira Island (February 2010). Nat Hazards 65(1):635–652. https://doi.org/10.1007/s11069-012-0387-y

  • Oliveira NS, Rotunno Filho OC, Marton E, Silva C (2016) Correlation between rainfall and landslides in Nova Friburgo, Rio de Janeiro—Brazil: a case study. Environ Earth Sci 75(20). https://doi.org/10.1007/s12665-016-6171-7

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

  • Rosi A, Canavesi V, Segoni S, Dias Nery T, Catani F, Casagli N (2019) Landslides in the mountain region of Rio de Janeiro: a Proposal for the semi-automated definition of multiple rainfall thresholds. Geosciences 9(5):203. https://doi.org/10.3390/geosciences9050203

  • Segoni S, Pappafico G, Luti T et al (2020) Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides 17:2443–2453. https://doi.org/10.1007/s10346-019-01340-2

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3–4):591–611

    Article  Google Scholar 

  • Silva RP, Lima PHM, Facadio AC, Coelho Netto AL (2016) Condicionantes geomorfológicos e geológicos relacionados à deflagração de movimentos gravitacionais de massa: bacia do Córrego Dantas, Nova Friburgo – RJ. Anais do XI Simpósio Nacional de Geomorfologia, Maringá, Paraná p. 7

  • Skempton AW (1953) The colloidal “activity” of clays. Proceedings of the 3rd International Conference of Soil Mechanics and Foundation Engineering 1:57–60

  • Strahler A (1952) Physical geography. John Wiley and Sons Inc, New York, p 643p

    Google Scholar 

  • Tofani V, Dapporto S, Vannocci P, Casagli N (2006) Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, Central Italy. Nat Hazards Earth Syst Sci 6:1025–1033. https://doi.org/10.5194/nhess-6-1025-2006

    Article  Google Scholar 

  • Tofani V, Bicocchi G, Rossi G, Segoni S, D’Ambrosio M, Casagli N, Catani F (2017) Soil characterization for shallow landslides modeling: a case study in the northern Apennines (Central Italy). Landslides 14:755–770. https://doi.org/10.1007/s10346-017-0809-8

    Article  Google Scholar 

  • Tukey JW (1953) The problem of multiple comparisons, mimeographed notes, Princeton, NJ: Princeton University, reprinted as chapter 1 in volume VIII of the collected works of John Tukey, ed. H. I. Braun, Belmont, CA: Wadsworth

  • Tupinambá M (2012) Geologia e recursos minerais da folha Nova Friburgo SF.23-Z-B-II, estado do Rio de Janeiro escala 1:100.000/Miguel Tupinambá et al.; organizador Luiz Carlos da Silva – Belo Horizonte CPRM p. 136

  • UNISDR (United Nations Office for Disaster Risk Reduction) (2018) Annual Report 2017. Geneva: United Nations p. 64. Accessed 26 August 2021 https://www.unisdr.org/files/58158_unisdr2017annualreport.pdf

  • Ural N (2018) The importance of clay in geotechnical engineering. In IntechOpen (ed) Current topics in the utilization of clay in industrial applications pp 83–102. https://doi.org/10.5772/intechopen.75817

  • Van Westen CJ, Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation-why is it so difficult? Bull Eng Geol Environ. Bulletin of Engineering Geology and Environment 65:167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng Geol 102(3–4):112–131. https://doi.org/10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • Vieira BC, Fernandes NF (2004) Landslides in Rio de Janeiro: the role played by variations in soil hydraulic conductivity. Hydrol Process 18:791–805. https://doi.org/10.1002/HYP.1363

  • Vogel HJ, Hoffmann H, Leopold A, Roth K (2005) Studies of crack dynamics in clay soil. Geoderma 125(3–4):213–223. https://doi.org/10.1016/j.geoderma.2004.07.00

  • Watakabe T, Matsushi Y (2019) Lithological controls on hydrological processes that trigger shallow landslides: observations from granite and hornfels hillslopes in Hiroshima. Japan CATENA 180:55–68. https://doi.org/10.1016/J.CATENA.2019.04.010

    Article  Google Scholar 

  • Wolle CM, Hachich W (1989) Rain-induced landslides in southeastern Brasil. In: Proceedings 12th International Conference Soil Mechanics and Foundation Engineering. Rio de Janeiro 3:1639–1642

  • World Bank (2012) Avaliação de Perdas e Danos: Inundações e Deslizamentos na Região Serrana do Rio de Janeiro - Janeiro de 2011 p. 60. Accessed 20 October 2021 https://documents1.worldbank.org/curated/pt/260891468222895493/pdf/NonAsciiFileName0.pdf

  • Yoder RE (1936) A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. J Agron 28:337–351. https://doi.org/10.2134/agronj1936.00021962002800050001x

  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM (2015) Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region. Saudi Arabia Landslides 13(5):839–856. https://doi.org/10.1007/s10346-015-0614-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian Council for Scientific and Technological Development (CNPq) and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (FAPERJ), which made this study financially viable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Pereira da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, R.P., Lacerda, W.A. & Coelho Netto, A.L. Relevant geological-geotechnical parameters to evaluate the terrain susceptibility for shallow landslides: Nova Friburgo, Rio de Janeiro, Brazil. Bull Eng Geol Environ 81, 57 (2022). https://doi.org/10.1007/s10064-021-02557-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-021-02557-z

Keywords

Navigation