Skip to main content

Advertisement

Log in

Physico-mechanical and mineralogical investigations of red bed slopes (Cluj-Napoca, Romania)

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The southern slope of the Cetățuia-Hoia Hill, located in the urban setting of Cluj-Napoca (Romania), consists of clayey deposits interbedded with sands and sandstones. The slope deposits belong to the Moigrad Formation and are representative of “red bed” continental deposits found across the world. Although documented as a landslide-prone area, the hillslope receives increased attention due to urban development and real estate pressure. The slope was affected by an old, deep-seated landslide; mudflows; and anthropogenic interventions. The stability of the old landslide is close to equilibrium (1.35) and its reactivation may be triggered by rainwater infiltration. The Moigrad Formation deposits are mostly active, expansive, and display medium to high plasticity. Their shearing resistance is described by effective friction angles of 6.7–33.7° and effective cohesive strengths of 7–122 kPa. With regard to mineralogy, the deposits are made up of quartz, feldspar, calcite, dolomite, and phyllosilicates (micas, chlorite, kaolinite, and minerals belonging to the smectite group), while their clay-sized fraction (< 2 µm) is made up of illite–smectite interstratifications, illite, chlorite, kaolinite, and quartz. The physical and mechanical properties of the deposits are closely related to the type and amount of clay-sized minerals, especially to the illite–smectite interstratifications and illite, which are the main components in the clay-sized fraction. Interactions between these components and water infiltrated within the hillslope are proposed as driving mechanisms for landslide reactivation and as active phenomena undermining the stability of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aksu I, Bazilevskaya E, Karpyn ZT (2015) Swelling of clay minerals in unconsolidated porous media and its impact on permeability. GeoResJ 7:1–13. https://doi.org/10.1016/j.grj.2015.02.003

    Article  Google Scholar 

  • Azañón JM, Azor A, Yesares J, Tsige M, Mateos RM, Nieto F, Delgado J, López-Chicano M, Martín W, Rodríguez-Fernández J (2010) Regional-scale high-plasticity clay-bearing formation as controlling factor on landslides in Southeast Spain. Geomorphology 120:26–37. https://doi.org/10.1016/j.geomorph.2009.09.012

    Article  Google Scholar 

  • Bo MW, Arulrajah A, Sukmak P, Horpibulsuk S (2015) Mineralogy and geotechnical properties of Singapore marine clay at Changi. Soils and Found 55(3):600–613. https://doi.org/10.1016/j.sandf.2015.04.011

    Article  Google Scholar 

  • Buzilă L, Perşoiu A, Surdeanu V (2001) Dinamica alunecării de teren de pe strada Dragalina (Dl. Cetățuia - Cluj-Napoca). Revista de Geomorfologie 3:119–122

    Google Scholar 

  • Carroll D, Starkey HC (1971) Reactivity of clay minerals with acids and alkalies. Clays Clay Miner 19:321–333

    Article  Google Scholar 

  • Casagrande A (1948) Classification and identification of soils. Trans Am Soc Civ Eng 113:901–930

  • Cerato AB, Lutenegger AJ (2005) Activity, relative activity and specific surface area of fine-grained soils. In: Proc of the 16th Int Conf Soil Mech and Geotechnical Eng Millpress Science Publishers/IOS Press, Rotterdam, pp 325–328. https://doi.org/10.3233/978-1-61499-656-9-325

  • Coimbra R, Rocha F, Immenhauser A, Olóriz F, Terroso D, Horikx M (2021) Carbonate-hosted clay minerals: a critical re-evaluation of extraction methods and their possible bias on palaeoenvironmental information. Earth Sci Rev 214:103502. https://doi.org/10.1016/j.earscirev.2021.103502

    Article  Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005) Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2:83–96. https://doi.org/10.1007/s10346-005-0049-1

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds.) Landslides-investigation and mitigation. National Research Council, Transportation Research Board, Special Report 247. Washington, DC, pp 36–75

  • Di Maio C, Vassallo R, Vallario M (2013) Plastic and viscous shear displacements of a deep and very slow landslide in stiff clay formation. Engeo 162:53–66. https://doi.org/10.1016/j.enggeo.2013.05.003

    Article  Google Scholar 

  • Dingman SL (2008) Physical hydrology. Waveland Press, Long Grove, Illinois

    Google Scholar 

  • Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program. BGMN J of Appl Cryst 48:1–8. https://doi.org/10.1107/S1600576715014685

    Article  Google Scholar 

  • Fiore S, Mongelli G (1991) Hypothesis on the genesis of day minerals in the fine fraction of «Argillevaricolori» from Andretta (southern Apennines). Mina Petrogr Acta 34:183–190

    Google Scholar 

  • Gui MW, Wu YM (2014) Failure of soil under water infiltration condition. Engeo 181:124–141. https://doi.org/10.1016/j.enggeo.2014.07.005

    Article  Google Scholar 

  • Hallal N, Yelles Chaouche A, Hamai L, Lamali A, Dubois L, Mohammedi Y, Hamidatou M, Djadia L, Abtout A (2019) Spatiotemporal evolution of the El Biar landslide (Algiers): new field observation data constrained by ground-penetrating radar investigations. Bull Eng Geol Environ 78:5653–5670. https://doi.org/10.1007/s10064-019-01492-4

    Article  Google Scholar 

  • Hansen L, Eilertsen R, Solberg IL, Rokoengen K (2007) Stratigraphic evaluation of a Holocene clay-slide in Northern Norway. Landslides 4:233–244. https://doi.org/10.1007/s10346-006-0078-4

    Article  Google Scholar 

  • Hosu A, Sylvester Z (1996) Tectonic vs. eustatic events in the oligocene deposits of the Transylvanian Basin and their significance. Anuarul Institutului Geologic al României 69(supl. 1):100–102

  • Hu M, Liu Y, Ren J, Wu R, Zhang Y (2017) Laboratory test on crack development in mudstone under the action of dry-wet cycles. Bull Eng Geol Environ 78:543–556. https://doi.org/10.1007/s10064-017-1080-x

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Ilies NM, Farcas VS, Cot RV, Moldovan IM (2016) The control of natural disaster caused by slopes sliding by means of stepped buildings. Procedia Technol 22:391–398. https://doi.org/10.1016/j.protcy.2016.01.028

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP, Böhm G, Demarée GR, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J of Climatol 22:1441–1453. Data and metadata available at http://www.ecad.eu

  • Krézsek C, Bally AW (2006) The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: insights in gravitational salt tectonics. Mar Pet Geol 23:405–442

    Article  Google Scholar 

  • Mészáros N, Clichici O (1988) Géologie du municipe Cluj-Napoca. Studia Univ. Babeş-Bolyai, Seria Geologia - Geographia 33(1):51–56

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior. John Wiley and Sons Inc., Hoboken

    Google Scholar 

  • Moore DM, Reynolds RC (1997) X-Ray diffraction and identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  • Pánek T, Hradecký J, Smolková V, Šilhán K (2008) Gigantic low-gradient landslides in the northern periphery of the Crimean Mountains (Ukraine). Geomorphology 95:449–473. https://doi.org/10.1016/j.geomorph.2007.07.007

    Article  Google Scholar 

  • Petrea D, Bilaşco Ş, Roşca S, Vescan I, Fodorea I (2014) The determination of the landslide occurrence probability by GIS spatial analysis of the land morphometric characteristics (Case study: The Transylvanian Plateau). Carpathian J of Earth and Environ Sci 9(2):91–102

    Google Scholar 

  • Polidori E (2009) Reappraisal of the activity of clays. Activity Chart Soils and Found 49(3):431–441. https://doi.org/10.3208/sandf.49.431

    Article  Google Scholar 

  • Poszet SL (2011) Studiu de geomorfologie aplicată în zona urbană Cluj-Napoca. Dissertation, Babeş-Bolyai University

  • Rosone M, Ziccarelli M, Ferrari A, Farulla CA (2018) On the reactivation of a large landslide induced by rainfall in highly fissured clays. Engeo 235:20–38. https://doi.org/10.1016/j.enggeo.2018.01.016

    Article  Google Scholar 

  • Rusu A (1970) Corelarea faciesurilor Oligocenului din regiunea Treznea - Bizuşa (NV Bazinului Transilvaniei). Studii şi Cercetări Geologice, Geofizice, Geografice, Seria Geologie 15(2):513–525

    Google Scholar 

  • Rusu A (1972) Semnalarea unui nivel cu Nucula comta în bazinul Transilvaniei şi implicațiile lui stratigrafice. Dări de Seamă IGG 58(4):265–282

    Google Scholar 

  • Skempton AW (1953) The colloidal “activity” of clays. Proc of the 3rd Int Conf Soil Mech 1:57–61

  • Skempton AW (1985) Residual strength of clays in landslides, folded strata and the laboratory. Geotechnique 35(1):3–18

    Article  Google Scholar 

  • Skempton AW, Hutchinson J (1969) Stability of natural slopes and embankment foundations. In: Proc 7th Int Conf on Soil Mech and Foundation Eng Sociedad Mexicana de Mecana de Suelos, Mexico City, pp 291–340

  • Surdeanu V (1998) Geografia terenurilor degradate, vol. 1: Alunecări de teren. Presa Universitară Clujeană, Cluj-Napoca

  • Surdeanu V, Goțiu D, Rus I, Crețu A (2006) Geomorfologie aplicată în zona urbană a municipiului Cluj-Napoca. Revista de Geomorfologie 8:25–34

    Google Scholar 

  • Tövissi I (1989) The role of the clay minerals from the Oligocene layers in the geomorphodynamical evolution of the slopes. In: Petrescu I et al (eds) The Oligocene from the Transylvanian Basin. Univ, Cluj-Napoca, Romania, pp 519–528

    Google Scholar 

  • Ufer K, Kleeberg R, Bergmann J, Dohrmann R (2012a) Rietveld refinement of disordered illite-smectite mixed-layer structures by a recursive algorithm. I: one-dimensional patterns. Clay Clay Miner 60(5):507–534. https://doi.org/10.1346/CCMN.2012.0600507

  • Ufer K, Kleeberg R, Bergmann J, Dohrmann R (2012b) Rietveld refinement of disordered illite-smectite mixed-layer structures by a recursive algorithm. II: powder-pattern refinement and quantitative phase analysis. Clay Clay Miner 60(5):535–552. https://doi.org/10.1346/CCMN.2012.0600508

  • Vîjdea A, Cociuba I (2013) Descrierea geohazardelor pentru Cluj-Napoca. PanGeo D7.1.33. http://www.pangeoproject.eu/pdfs/locale/cluj_napoca/Geohazard-Description-cluj_napoca.pdf. Accessed 2 June 2018

  • Wanek F, Poszet S (2009) Slope danger on the territory of Cluj-Napoca resulting from the structure and morphology of the hills between the river Someşul Mic and the valley of Nadăş (between Tăietura Turcului and Cheile Baciului). Acta Univ Sapientiae, Agric and Environ 1:74–82

    Google Scholar 

  • Wang LL, Bornert M, Yang DS, Héripré E, Chanchole S, Halphen B, Pouya A, Caldemaison D (2015) Microstructural insight into the nonlinear swelling of argillaceous rocks. Engeo 193:435–444. https://doi.org/10.1016/j.enggeo.2015.05.019

    Article  Google Scholar 

  • Xin P, Liu Z, Wu S, Liang C, Lin C (2018) Rotational-translational landslides in the neogene basins at the northeast margin of the Tibetan Plateau. Engeo 244:107–115. https://doi.org/10.1016/j.enggeo.2018.07.024

    Article  Google Scholar 

  • Yilmaz I, Karakan E (2002) A landslide in clayey soils: an example from the Kizildag Region of the Sivas-Erzincan Highway (Sivas-Turkey). Environ Geosci 9(1):35–42. https://doi.org/10.1046/j.1526-0984.2002.91002

    Article  Google Scholar 

Download references

Acknowledgements

We thank Silviu Vaida for help during fieldwork, Brăduț Ionescu and Maria Nicula for their assistance with the physico-mechanical analyses, and Dr. Lucian Barbu-Tudoran for his help with the electron microscope imaging. Andrei Todor and Dr. Mihaela Pop provided useful advice on the Rietveld refinement of the XRD data. Dr. Kristian Ufer kindly helped with the structure files for the illite-smectite interstratifications. For precipitation data on Cluj-Napoca, we acknowledge the data providers in the ECA&D project. We also thank the three anonymous reviewers for their constructive suggestions that helped improve the manuscript.

Funding

This work was supported by the Babeş-Bolyai University through a STAR-UBB Institute Performance scientific scholarship (to ARM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Tămaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marat, A.R., Tămaş, T., Samşudean, C. et al. Physico-mechanical and mineralogical investigations of red bed slopes (Cluj-Napoca, Romania). Bull Eng Geol Environ 81, 78 (2022). https://doi.org/10.1007/s10064-021-02542-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10064-021-02542-6

Keywords

Navigation