Skip to main content
Log in

Estimation of empirical rainfall thresholds for landslide triggering using partial duration series and their relation with climatic cycles. An application in southern Ecuador

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Rainfall-induced landslides constitute a major cause of damage and fatalities throughout the intramontane basins of the Andes. The geological and climatic setting plays a key role in the generation of a high number of landslides in this area. For this reason, a greater understanding of the relationship between landslide frequency and climate conditions is necessary to mitigate human and economic losses. Accordingly, this paper presents an analysis of rainfall variables associated with a series of dated landslides (153 in total) in the southern Ecuador basin of Loja. This analysis was performed by applying an affordable empirical method that enables the calculation of critical rainfall threshold (CRT) curves. This calculation is based on an in-depth examination of rainfall parameters, such as cumulative precipitation and mean intensity, linked to a wide range of rainfall duration (from 1 to 90 days). The inspection of these parameters was addressed considering their frequency, which was calculated by using partial duration series (PDS), taking into account the entire rainfall record. This work has revealed that only 24% of landslides were triggered by rainfall conditions with maximum return periods greater than 1 year, whereas the rest did not exceed that return period. After finding the best correlation between the maximum return periods and the maximum mean intensity, a minimum power law function was adjusted to the CRT curve that correlates duration and cumulative rainfall. The values for this CRT function resulted in 5.14 and 0.83 for its scaling constant (α) and shape parameter (β), respectively. In addition, a spectral analysis was conducted to detect climatic cycles on the entire rainfall record. In general, a clear correlation could not be established between climatic frequencies and significant rainfall events inducing landslides, although similarly return periods were found for a critical rainfall event of March 2015 (10.4 years) and the SUNSPOT cycles (10.5-12 years). The results derived from this research are significantly valuable for the prevention of future mass-movements, although additional data will be crucial to update and calibrate CRT curves to study the influence of climate on landslide event frequency and magnitude in Loja.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44

    Article  Google Scholar 

  • Alleotti P, Polloni G (2003) Two-dimensional model of the 1998 Sarno debris flows (Italy): preleminary results. In: Rickenmann and Chen (eds) Third International Conference on Mud and Debris Flows, Proceedings of Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland. Millpress, Rotterdam, p 553–663

  • Aristizábal E, Vélez JI, Martínez HE, Jaboyedoff M (2016) SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides 13(3):497–517

    Article  Google Scholar 

  • Baum RL, Godt JW (2010) Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 7(3):259–272. https://doi.org/10.1007/s10346-009-0177-0

    Article  Google Scholar 

  • Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M (2012) Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J Geophys Res Earth Surf 117(F4). https://doi.org/10.1029/2012jf002367

  • Blackman RB, Tukey JW (1958) The measurement of power spectra from the point of view of communications engineering. Bell Syst Tech J 37(1):185–282

    Article  Google Scholar 

  • Borga M, Dalla Fontana G, Cazorzi F (2002) Analysis of topographic and climatic control on rainfall triggered shallow landsliding using a quasi-dynamic wetness index. J Hydrol 268(1–4):56–71. https://doi.org/10.1016/s0022-1694(02)00118-x

    Article  Google Scholar 

  • Brabb EE (1991) The world landslide problem. Episodes 14(1):52–61

    Google Scholar 

  • Brenning A, Schwinn M, Muenchow J (2015) Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province. Nat Hazards Earth Syst Sci 15(1):45–57

    Article  Google Scholar 

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazard Earth Sys 10(3):447–458. https://doi.org/10.5194/nhess-10-447-2010

    Article  Google Scholar 

  • Bussmann RW, Wilcke W, Richter M (2008) Landslides as important disturbance regimes—causes and regeneration. In: Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin Heidelberg, pp 319–330

    Chapter  Google Scholar 

  • Cadier E, Zevallos O, Basabe P (1996) El deslizamiento y las inundaciones catastroficas de la Josefina en el Ecuador. BullInst Fr Etud Andines 5(3):421–441

    Google Scholar 

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann Ser A 62(1-2):23–27

    Article  Google Scholar 

  • Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazard Earth Syst Sci 2(1–2):57–72. https://doi.org/10.5194/nhess-2-57-200

    Article  Google Scholar 

  • Casale R, Fantecchi R, Flageolet JC (1994) Temporal occurrence and forecasting of landslides in the European Community. In: Casale R, Fantecchi R, Flageolet JC (eds) Final report. Programme Epoch (Ct. 90 0025). European Community, p 957

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411. https://doi.org/10.1007/s10064-006-0064-z

    Article  Google Scholar 

  • Chatfield C (1991) The analysis of time series, 4th edn. Chapman and Hall, London, p 241

    Google Scholar 

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102(3-4):193–213. https://doi.org/10.1016/j.enggeo.2008.03.018

    Article  Google Scholar 

  • Crozier M (1986) Landslides: causes, consequences and environment. Croom Helm, London, p 252

    Google Scholar 

  • Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In Proceedings of 3rd Australia-New Zealand Conference on Geomechanics, Wellington, N.Z.: Institution of Professional Engineers New Zealand, 1980: 2-47-2-51. Proceedings of Technical Groups. Vol. 6, p. 247–251

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds.) Landslides: investigation and mitigation. Sp. Rep. 247, Transportation Research Board, National Research Council. National Academy Press, Washington DC, p 36–75

  • Cunnane C (1973) A particular comparison of annual maxima and partial duration series methods of flood frequency prediction. J Hydrol 18(3–4):257–271. https://doi.org/10.1016/0022-1694(73)90051-6

    Article  Google Scholar 

  • De Vita P, Napolitano E, Godt J, Baum R (2013) Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy. Landslides 10(6):713–728. https://doi.org/10.1007/s10346-012-0348-2

    Article  Google Scholar 

  • Dikau R, Cavallin A, Jäger S (1996) Databases and GIS for landslide research in Europe. Geomorphology 15(3):227–239

    Article  Google Scholar 

  • Eras M (2014) Determinación de zonas susceptibles a movimientos en masa en el Ecuador, a escala 1:1.000.000 utilizando el método de ponderación de parámetros. Tesis de pregrado. Escuela Politécnica Nacional. Quito, Ecuador, p 119

  • Frattini P, Crosta GB, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment. Eng Geol 73(3–4):277–295. https://doi.org/10.1016/j.enggeo.2004.01.009

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 162:227–252. https://doi.org/10.1016/j.earscirev.2016.08.011

    Article  Google Scholar 

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019

    Article  Google Scholar 

  • Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure Appl Geophys 157(6–8):1059–1079. https://doi.org/10.1007/s000240050017

    Article  Google Scholar 

  • González Garcia AJ, Mayorga Marquez R (2004) Thresholds for rainfall events that induce landslides in Colombia. Landslides: Evaluation and Stabilization, Taylor and Francis Group, London, p 349–355

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98(3–4):239–267. https://doi.org/10.1007/s00703-007-0262-7

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark C (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. https://doi.org/10.1007/s10346-007-0112-1

    Article  Google Scholar 

  • Haque CE, Burton I (2005) Adaptation options strategies for hazards and vulnerability mitigation: an international perspective. Mitig Adapt Strateg Glob Chang 10(3):335–353. https://doi.org/10.1007/s11027-005-0050-y

    Article  Google Scholar 

  • Hermanns RL, Valderrama P, Fauqué L, Penna IM, Sepúlveda S, Moreiras S, Zavala Carrión B (2012) Landslides in the Andes and the need to communicate on an interandean level on landslide mapping and research. Rev Asoc Geol Argent 69(3):321–327

    Google Scholar 

  • Hung C, Lin GW, Syu HS, Chen CW, Yen HY (2017) Analysis of the Aso-bridge landslide during the 2016 Kumamoto earthquakes in Japan. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-017-1103-7

  • Hungerbühler D, Steinmann M, Winkler W, Sewards D, Egüez A, Peterson DE, Helg U, Hammer C (2002) Neogene stratigraphy and Andean geodynamics of southern Ecuador. Earth Sci Rev 57:75–124. https://doi.org/10.1016/S0012-8252(01)00071-X

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679

    Article  Google Scholar 

  • Ibadango C, Soto J, Tamay J, Escudero P, Porter M (2005) Mass movements in the Loja Basin- Ecuador, South America. Proceedings, Int Conf Landslide Risk Management. Vancouver, Canada 10:1-7

  • Ibsen ML, Brunsden D (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor. Isle of Wight. Geomorphology 15(3–4):241–258. https://doi.org/10.1016/0169-555X(95)00073-E

    Article  Google Scholar 

  • INEC (2010) Instituto Nacional de Estadísticas y Censos. VII Censo de población y VI de vivienda. Ecuador. URL: http://www.inec.gob.ec

  • INIGEMM (2013) Instituto Nacional de Investigación Geológico Minero y Metalúrgico. Mapa de susceptibilidad por movimientos en masa del Ecuador, escala 1:1,000,000. Technical report. Unpublished

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco, p 525

    Google Scholar 

  • Karagiannidis AF, Karacostas T, Maheras P, Makrogiannis T (2012) Climatological aspects of extreme precipitation in Europe, related to mid-latitude cyclonic systems. Theor Appl Climatol 107(1-2):165–174

    Article  Google Scholar 

  • Kennerley JB (1980) Outline of the geology of Ecuador. Overseas Geol Miner Resour 55:17

    Google Scholar 

  • Kim SK, Hong WP, Kim YK (1991) Prediction of rainfall-triggered landslides in Korea. In: Bell C (ed) 6th international symposium on landslides, vol 2. A.A. Balkema, Rotterdam

    Google Scholar 

  • Knippertz P (2003) Tropical-extratropical interactions causing precipitation in Northwest Africa: statistical analysis and seasonal variations. Mon Weather Rev 131(12):3069–3076

    Article  Google Scholar 

  • Kumar A, Asthana A, Priyanka RS, Jayangondaperumal R, Gupta AD, Bhakuni SS (2017) Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India. Geomorphology 284:72–87. https://doi.org/10.1016/j.geomorph.2017.01.003

    Article  Google Scholar 

  • Labitzke K, Van Loon H, Shine K (1990) Associations between the 11-year solar cycle, the quasi-biennial oscillation and the atmosphere: a summary of recent work [and discussion]. Philos Trans R Soc Lond A 330(1615):577–589

    Article  Google Scholar 

  • Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, Sec. 3, p 31–61. ISBN/ISSN: 978-3-540-69966-8. doi:https://doi.org/10.1007/978-3-540-69970-5_3

  • Lamb HH (1977) Climate history and the future. Methuen, London, p 212

    Google Scholar 

  • Larsen MC, Wieczorek GF (2006) Geomorphic effects of large debris flows and flash floods, northern Venezuela, 1999. Z Geomorph NF suppl 145:147–175

    Google Scholar 

  • Li C, Ma T, Zhu X, Li W (2011) The power-law relationship between landslide occurrence and rainfall level. Geomorphology 130(3–4):221–229. https://doi.org/10.1016/j.geomorph.2011.03.018

    Article  Google Scholar 

  • Lozano P, Bussmann RW, Küppers M (2005) Landslides as ecosystem disturbance—their implications and importance in South Ecuador. Lyonia 8(1):67–72

    Google Scholar 

  • Lumb P (1975) Slope failure in Hong Kong. Q J Eng Geol 8:31–65

    Article  Google Scholar 

  • Luque-Espinar JA, Chica-Olmo M, Pardo-Igúzquiza E, García-Soldado MJ (2008) Influence of climatological cycles on hydraulic heads across a Spanish aquifer. J Hydrol 354(1):33–52

    Article  Google Scholar 

  • Ma T, Li C, Lu Z, Wang B (2014) An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level. Geomorphology 216:187–192. https://doi.org/10.1016/j.geomorph.2014.03.033

    Article  Google Scholar 

  • Marui H, Wanfg C (2015) Earthquake-Induced Landslides: An Overview. In: Lollino G, Giordan D, Crosta GB et al. (eds) Engineering Geology for Society and Territory - Volume 2: Landslide Processes. Springer International Publishing. ISBN/ISSN: 978-3-319-09057-3. pp 713-715. doi: https://doi.org/10.1007/978-3-319-09057-3_119

  • Muenchow J, Brenning A, Richter M (2012) Geomorphic process rates of landslides along a humidity gradient in the tropical Andes. Geomorphology 139:271–284

    Article  Google Scholar 

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–173. https://doi.org/10.1007/s10346-006-0036-1

    Article  Google Scholar 

  • Nikolopoulos EI, Crema S, Marchi L, Marra F, Guzzetti F, Borga M (2014) Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 221:286–297. https://doi.org/10.1016/j.geomorph.2014.06.015

    Article  Google Scholar 

  • Palenzuela JA, Jiménez-Perálvarez JD, Chacón J, Irigaray C (2016) Assessing critical rainfall thresholds for landslide triggering by generating additional information from a reduced database: an approach with examples from the Betic cordillera (Spain). Nat Hazards 84(1):185–212. https://doi.org/10.1007/s11069-016-2416-8

    Article  Google Scholar 

  • Panizza M (1996) 3 Geomorphological hazard. In: Mario P (eds) Developments in earth surface processes. Elsevier, vol 4, pp 75–76. ISBN/ISSN: 0928-2025. doi: https://doi.org/10.1016/S0928-2025(96)80020-4

  • Papa MN, Medina V, Ciervo F, Bateman A (2013) Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol Earth Syst Sci 17(10):4095–4107. https://doi.org/10.5194/hess-17-4095-2013

    Article  Google Scholar 

  • Pardo-Igúzquiza E, Rodríguez-Tovar FJ (2012a) POWGRAF2: a program for graphical spectral analysis in cyclostratigraphy. Comput Geosci 30(2004):533–542

    Google Scholar 

  • Pardo-Igúzquiza E, Rodríguez-Tovar FJ (2012b) Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb–Scargle periodogram and Monte Carlo evaluation of statistical significance. Comput Geosci 49:207–216

    Article  Google Scholar 

  • Pardo-Igúzquiza E, Rodríguez-Tovar FJ (2004) POWGRAF2: a program for graphical spectral analysis in cyclostratigraphy. Comput Geosci 30(5):533–542

  • Petley D (2012) Global patterns of loss of life from landslides. Geology. The Geological Society of America, vol 40. 10, pp 927–930. ISBN/ISSN: 0091-7613. doi: https://doi.org/10.1130/G33217.1

  • Petley D, Dunning SA, Rosser NJ (2005) The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. Landslide risk management. Balkema, Amsterdam, pp 367–374

    Google Scholar 

  • Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA (2007) Trends in landslide occurrence in Nepal. Nat Haz 43(1):23–44. https://doi.org/10.1007/s11069-006-9100-3

    Article  Google Scholar 

  • PMA (2007) Proyecto Multinacional Andino: Geociencias para las Comunidades Andinas. Movimientos en masa en la Región Andina: Una guía para la evaluación de amenazas. Servicio Nacional de Geología y Minería, Publicación Geológica Multinacional, No. 4, p 432, 1 cd-rom

  • PNUMA M. D. L. Naturaleza y Cultura Internacional (2007) Perspectivas del Medio Ambiente Urbano GEO Loja. Loja, Ecuador

  • Rossi M, Peruccacci S, Guzzetti F (2006) A review of rainfall thresholds for the initiation of landslides. Geophys Res Abstr 8:02323

    Google Scholar 

  • Runqiu H (2009) Some catastrophic landslides since the twentieth century in the southwest of China. Landslides 6(1):69–81. https://doi.org/10.1007/s10346-009-0142-y

    Article  Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan. Geomorphology 118(1-2):167–175, ISSN 0169-555X. https://doi.org/10.1016/j.geomorph.2009.12.016

    Article  Google Scholar 

  • Sassa K, Tsuchiya S, Fukuoka H, Mikos M, Doan L (2015) Landslides: review of achievements in the second 5-year period (2009–2013). Landslides 2:213–223. https://doi.org/10.1007/s10346-015-0567-4

    Article  Google Scholar 

  • Schuster RL, Highland LM (2001) Socioeconomic and Environ-mental Impacts of Landslides in the Western Hemisphere. Open-File Report 01-0276, US Geological Survey, p. 47

  • Schwarzacher W (2000) Repetitions and cycles in stratigraphy. Earth-Sci Rev 50(1):51–75. https://doi.org/10.1016/S0012-8252(99)00070-7

    Article  Google Scholar 

  • Segoni S, Rossi G, Rosi A, Catani F (2014) Landslides triggered by rainfall: a semi-automated procedure to define consistent intensity–duration thresholds. Comput Geosci 63:123–131. https://doi.org/10.1016/j.cageo.2013.10.009

    Article  Google Scholar 

  • Sepúlveda SA, Rebolledo S, Vargas G (2006) Recent catastrophic debris flows in Chile: geological hazard, climatic relationships and human response. Quat Int 158(1):83–95

    Article  Google Scholar 

  • Shanmugam G (2015) The landslide problem. J Palaeogeogr 4(2):109–166. https://doi.org/10.3724/SP.J.1261.2015.00071

    Article  Google Scholar 

  • SNGR/ECHO/UNISDR (2012) Secretaría Nacional de Gestión de Riesgos. Referencias Básicas para la Gestión de Riesgos. Quito, Ecuador, Ecuador

    Google Scholar 

  • Song K, Wang F, Dai Z, Iio A, Osaka O, Sakata S (2017) Geological characteristics of landslides triggered by the 2016 Kumamoto earthquake in Mt. Aso volcano, Japan. Bull Eng Geol. https://doi.org/10.1007/s10064-017-1097-1

  • Soto J, Galve JP, Palenzuela JA, Azañón JM, Tamay J, Irigaray C (2017) A multi-method approach for the characterization of landslides in an intramontane basin in the Andes (Loja, Ecuador). Landslides:1–19

  • Stuiver M, Braziunas TF (1989) Atmospheric 14C and century-scale solar oscillations. Nature 388:405–407

    Article  Google Scholar 

  • Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides: the integration of hydrologic models, slope stability models and geographic information systems for the hazard zonation of rainfall-triggered landslides with examples from Manizales (Colombia). International Institute for Aerial Survey and Earth Sciences (ITC)

  • Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia). Geomorphology 20(1):165–175

    Article  Google Scholar 

  • Terlien MTJ (1998) The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ Geol 35(2–3):124–130. https://doi.org/10.1007/s002540050299

    Article  Google Scholar 

  • Tukey JW (1967) An introduction to the calculations of numerical spectrum analysis. In: Harris B (ed) Spectral analysis of time series. Wiley, New York, pp 25–46

    Google Scholar 

  • UNESCO (1973–1979) Annual summaries of information on natural disasters, 1971–1975. UNESCO, Paris

    Google Scholar 

  • Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558. https://doi.org/10.1016/j.geomorph.2011.12.006

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of materials. Ing Velenskaps Akad Handl 151:1–45

    Google Scholar 

  • Wieczorek G, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M and Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, p 325–362. https://doi.org/10.1007/3-540-27129-5_14

  • Wilcke W, Valladarez H, Stoyan R, Yasin S, Valarezo C, Zech W (2003) Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. Catena 53(1):79–95

  • Xu XZ, Guo WZ, Liu YK, Ma JZ, Wang WL, Zhang HW, Gao H (2017) Landslides on the loess plateau of China: a latest statistics together with a close look. Nat Haz 86(3):1393–1403. https://doi.org/10.1007/s11069-016-2738-6

    Article  Google Scholar 

  • Zhuang J, Peng J, Wang G, Iqbal J, Wang Y, Li W, Xu Q, Zhu X (2017) Prediction of rainfall-induced shallow landslides in the loess plateau, Yan’an, China, using the TRIGRS model. Earth Surf Process Landforms 42:915–927. https://doi.org/10.1002/esp.4050

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported through a grant awarded by the Ministry of Higher Education, Science, Technology and Innovation (SENESCYT) under the scholarship program “Open Call 2012 Second Phase” of the government of Ecuador. Furthermore, the major analysis on rainfall and landslide datasets have been possible thanks to the data provided by the Ecuadorian National Meteorological and Hydrologic Institute (INAMHI) and the Ecuadorian Secretary for Risk Management (SNGR-Zone 7). J.P. Galve acknowledges funding by the Spanish Ministry of Economy and Competitiveness through the ‘Juan de la Cierva’ Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, J., Palenzuela, J.A., Galve, J.P. et al. Estimation of empirical rainfall thresholds for landslide triggering using partial duration series and their relation with climatic cycles. An application in southern Ecuador. Bull Eng Geol Environ 78, 1971–1987 (2019). https://doi.org/10.1007/s10064-017-1216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1216-z

Keywords

Navigation