Skip to main content
Log in

Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China

Evaluation de la subsidence en considérant les structures constituant les aquifères de Shanghai, Chine

Evaluación de la subsidencia del terreno considerando las estructuras del subsuelo que penetran en los acuíferos de Shanghai, China

上海地区考虑地下构筑物插入含水层的地面沉降评估

Avaliação de subsidência de terrenos considerando estruturas subterrâneas que atravessam os aquíferos de Xangai, China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Underground structures that penetrate into aquifers can cause groundwater-level drawdown and land subsidence. Numerical analyses, based on a three-dimensional (3-D) groundwater flow model incorporated with a 1-D consolidation model, have been conducted to assess the behaviour of seepage and effect on subsidence by considering underground structures in the multi-aquifer–aquitard system of Shanghai, China. Two extreme scenarios were examined: (1) distributed underground structures, and (2) concentrated underground structures around the heavily urbanized area. In the first scenario, the aquifer with underground structures was substituted with another material that possessed a lower hydraulic conductivity, established using the effective-medium theory; when the ratio of the volume of the underground structures to that of selected aquifer layers—(1) low-pressure partially-confined aquifer (Aq02), (2) the first confined aquifer (AqI), and (3) the second confined aquifer (AqII)—increases by 10 %, subsidence increases by about 3, 3 and 32 %, respectively. In the second scenario, part of the aquifer material was directly replaced by the structure material (very low hydraulic conductivity). In this situation, when the ratio of the volume of the underground structure to the volume of aquifers Aq02, AqI or AqII increases by 10 %, subsidence increases by about 5, 8 or 20 %, respectively.

Résumé

Les structures souterraines constituant les aquifères peuvent causer un abaissement des niveaux piézométriques et de la subsidence. Des analyses numériques ont été conduites pour évaluer l’incidence des infiltrations et les effets sur la subsidence en fonction des structures souterraines du système aquifère multicouches de Shanghai, Chine. Elles sont basées sur un modèle tridimensionnel d’écoulements souterrains (3-D) associé à un modèle de consolidation 1-D. Deux scénarios extrêmes ont été examinés: (1) des structures souterraines disséminées; et (2) des structures souterraines concentrées autour de la zone fortement urbanisée. Dans le premier scénario, l’aquifère avec ses structures souterraines est remplacé par un autre milieu qui présente une conductivité hydraulique plus faible, établie sur la base de la théorie du milieu effectif. Lorsque le rapport du volume des structures souterraines à celui des niveaux aquifères sélectionnés augmente de 10 %, la subsidence augmente de 3, 3 et 32 % pour respectivement : (1) l’aquifère partiellement confiné (Aq02) à faible charge; (2) le premier aquifère confiné (AqI); et (3) le second aquifère confiné (AqII). Dans le second scénario, une partie du matériau aquifère est directement remplacé par le milieu de la structure (très basse conductivité hydraulique). Dans cette situation, lorsque le rapport du volume des structures souterraines au volume des aquifères Aq02, AqI et AqII augmente de 10 %, la subsidence augmente respectivement d’environ 5, 8 et 20 %.

Resumen

Las estructuras del subsuelo que penetran en los acuíferos pueden causar una depresión en los niveles de agua subterránea y subsidencia del terreno. Los análisis numéricos, basados en un modelo incorporado de flujo tridimensional (3-D) de agua subterránea con modelo unidimensional (1-D) de consolidación han sido realizados para evaluar el comportamiento de la filtración y los efectos en la subsidencia considerando las estructuras del subsuelo en el sistema multi acuífero – acuitardo de Shanghai, China. Se examinaron dos escenarios extremos: (1) las estructuras de subsuelo distribuidas, y (2) las estructuras del subsuelo concentradas alrededor del área más fuertemente urbanizada. En el primer escenario, el acuífero con estructuras de subsuelo fue sustituido con otro material que poseía una baja conductividad hidráulica, establecido usando la teoría del medio efectivo, cuando el cociente del volumen de las estructuras del subsuelo al de las capas seleccionadas de los acuíferos—(1) acuífero de baja presión parcialmente confinado (Aq02), (2) el primer acuífero confinado (AqI), y (3) el segundo acuífero confinado (AqII)—se aumenta en un 10 %, la subsidencia se incrementa alrededor de un 3, 3 y 32 %, respectivamente. En el segundo escenario, parte del material del acuífero fue directamente reemplazada por el material de la estructura (muy baja conductividad hidráulica). En esta situación, cuando el cociente del volumen de la estructura de subsuelo al volumen del acuífero Aq02, AqI o AqII se incrementa en un 10 %, la subsidencia se incrementa en alrededor de 5, 8 o 20 %, respectivamente.

摘要

位于含水层中的地下构筑物会造成地下水位的下降并引起地面沉降。以上海市含水层与隔水层交互堆积的地层为研究对象,建立三维地下水渗流及一维土体固结相结合的地面沉降计算模型分析地下构筑物对地下水渗流及地面沉降的影响效应。计算中考虑了地下构筑物的两种极端分布方式:1)分布式构筑物,2)集中式构筑物。分布式构筑物情况下,基于等效介质理论将上海中心城区含有大量地下构筑物的含水层简化为渗透系数降低了的新材料。当微承压含水层、第I含水层及第II含水层中的构筑物含量分别增加10%时,中心城区的平均年沉降量增长约3、3和32%;集中式配置构筑物情况下,则将含有构筑物的含水层单元的材质直接替换为构筑物材料。当微承压含水层、第I含水层及第II含水层中的构筑物含量分别增加10%时,中心城区的平均年沉降量增长约5、8及20%。

Resumo

Estruturas subterrâneas integradas em aquíferos podem causar rebaixamentos no nível piezométrico e subsidência nos terrenos. Foram desenvolvidas análises numéricas baseadas em modelos tridimensionais (3-D) do escoamento subterrâneo que incorporam um modelo unidimensional de consolidação para avaliar o comportamento de infiltração e o efeito na subsidência, considerando estruturas subterrâneas no sistema multiaquífero-aquitardo de Xangai, China. Foram analisados dois cenários extremos: (1) um com estruturas subterrâneas distribuídas, e (2) o outro com estruturas subterrâneas concentradas numa área altamente urbanizada. No primeiro cenário o aquífero com estruturas subterrâneas foi substituído por um outro com um tipo de material que possui uma condutividade hidráulica mais reduzida, estabelecida usando a teoria do meio efetivo; quando a razão do volume da estrutura subterrânea com a dos aquíferos selecionados—(1) o aquífero semiconfinado de baixa pressão (Aq02), (2) o primeiro aquífero confinado (AqI), e (3) o segundo aquífero confinado (AqII)—aumenta em 10%, a subsidência aumenta cerca de 3, 3 e 32%, respetivamente. No segundo cenário, parte do material do aquífero foi diretamente substituído por material da estrutura (com muito baixa condutividade hidráulica). Nesta situação, quando a razão do volume da estrutura subterrânea com a dos volumes dos aquíferos Aq02, AqI e AqII aumenta 10%, a subsidência aumenta cerca de 5, 8 e 20%, respetivamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Chai JC, Miura N, Shen SL (2002) Performance of embankments with and without reinforcement on soft subsoil. Can Geotech J 39(4):838–848

    Article  Google Scholar 

  • Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Geotechnique 54(3):143–148

    Google Scholar 

  • Cui ZD, Tang YQ (2010) Land subsidence and pore structure of soils caused by the high-rise building group through centrifuge model test. Eng Geol 113(1–4):44–52

    Article  Google Scholar 

  • Dagan G (1979) Models of groundwater flow in statistically homogeneous porous formations. Water Resour Res 15(1):47–63

    Article  Google Scholar 

  • Desbarats AJ (1987) Numerical estimation of effective permeability in sand-shale formation. Water Resour Res 23(2):273–286

    Article  Google Scholar 

  • Ding GP, Jiao JJ, Zhang DX (2008) Modelling study on the impact of deep building foundations on the groundwater system. Hydrol Process 22(12):1857–1865

    Article  Google Scholar 

  • Gong J, Zhao XH (2007) Prediction of behavior of piled raft foundation for the 101-storey Shanghai World Financial Center (in Chinese). Rock Soil Mech 28(8):1695–1699

    Google Scholar 

  • Gong SL, Wu JZ, Yan XX (2005) Analysis on land subsidence due to construction engineering in soft soil region of Shanghai. In: Zhang AG, Gong SL, Carbognin L, Johnson AI (eds) Land subsidence, Proceedings of the Seventh International Symposium on Land Subsidence, vol 1. Oct 22–28, 2005, Shanghai, pp 82–87

  • Gong SL, Li C, Yang SL (2009) The microscopic characteristics of Shanghai soft clay and its effect on soil body deformation and land subsidence. Environ Geol 56(6):1051–1056

    Article  Google Scholar 

  • Huang JX, Zhang XC (2008) Analysis of groundwater during urban subway construction (in Chinese). Geotech Eng World 11:54–56

    Google Scholar 

  • Jiao JJ, Wang XS, Nandy S (2006) Preliminary assessment of the impacts of deep foundations and land reclamation on groundwater flow in a coastal area in Hong Kong, China. Hydrogeol J 14(1–2):100–114

    Article  Google Scholar 

  • Jiao JJ, Leung CM, Ding GP (2008) Changes to the groundwater system, from 1888 to present, in a highly-urbanized coastal area in Hong Kong, China. Hydrogeol J 16(8):1527–1539

    Article  Google Scholar 

  • Johnson IA, Frobel RK, Cavalli NJ, Frobel RK (eds) (1984) Hydraulic barriers in soil and rocks. ASTM special technical publication 874, American Society for Testing and Materials, Philadelphia, PA

  • Nishigaki M (2010) Geotechnical aspects of groundwater control. Soils Found 50(6):893–902

    Article  Google Scholar 

  • Peng FL, Wang HL, Tan Y, Xu ZL, Li YL (2011) Field measurements and FEM simulation of a tunnel shaft constructed by pneumatic caisson method in Shanghai soft ground. J Geotechn Geoenviron Eng ASCE 137(5):516–524

    Article  Google Scholar 

  • Renard P, Marsily GD (1997) Calculating equivalent permeability: a review. Adv Water Resour 20(5–6):253–278

    Article  Google Scholar 

  • Shanghai Geological Environmental Atlas Editorial Board (SGEAEB) (2002) Shanghai Geological Environmental Atlas (SGEA). SGEAEB, Beijing

    Google Scholar 

  • Shanghai Geology Office (SGO) (1979) Report on land subsidence in Shanghai (1962–1976) (in Chinese). Shanghai Geology Office, Shanghai

  • Shanghai Institute of Geology Survey (SIGS) (2008) Technical specification for land subsidence monitor and control (DG/TJ08-2051-2008) (in Chinese). SIGS, Shanghai

  • Shanghai Municipal Government (SMG) (2006) Procedures of Shanghai Municipality on the administration of prevention and control of surface subsidence (in Chinese). Decree of the Shanghai Municipal People’s Government No. 62, Shanghai Municipality, Shanghai

  • Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392

    Article  Google Scholar 

  • Shen SL, Tang CP, Bai Y, Xu YS (2006a) Analysis of settlement due to withdrawal of groundwater around an unexcavated foundation pit. In: Zhu HH, Zhang F, Chin CT, Zhang DM (eds) Underground construction and ground movement. Geotechnical special publication no. 155, ASCE, Washington, DC, pp 377–384

  • Shen SL, Xu YS, Hong ZS (2006b) Estimation of land subsidence based on groundwater flow model. Mar Georesour Geotechnol 24(2):149–167

    Article  Google Scholar 

  • Shen SL, Du YJ, Luo CY (2010) Evaluation of the effect of double-o-tunnel rolling-correction via apply one-side block loading. Can Geotech J 47(10):1060–1070

    Article  Google Scholar 

  • Tan Y, Li MW (2011) Measured performance of a 26 m deep top-down excavation in downtown Shanghai. Can Geotech J 48(5):704–719

    Article  Google Scholar 

  • Tang YQ, Cui ZD, Wang JX, Lu C, Yan XX (2008) Model test study of land subsidence caused by high-rise building group in Shanghai. Bull Eng Geol Environ 67(2):173–179

    Article  Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  • Xu YS (2010) Evaluation of the behaviour of groundwater seepage and land subsidence via considering infrastructures penetrated into aquifers (in Chinese). PhD Thesis, Shanghai Jiao Tong University, China

  • Xu YS, Shen SL, Cai ZY, Zhou GY (2008) The state of land subsidence and prediction activities due to groundwater withdrawal in China. Nat Hazard 45(1):123–135

    Article  Google Scholar 

  • Xu YS, Shen SL, Du YJ (2009) Geological and hydrogeological environment in Shanghai with geohazards to construction and maintenance of infrastructures. Eng Geol 109(3–4):241–254

    Article  Google Scholar 

  • Xu YS, Ma L, Du YJ, Shen SL (2012) Analysis on urbanization induced land subsidence in Shanghai. Nat Hazards. doi:10.1007/s11069-012-0220-7

  • Yin JH (1999) Non-linear creep of soils in oedometer tests. Geotechnique 49(5):699–707

    Article  Google Scholar 

  • Yin ZY, Karstunen M, Chang CS, Koskinen M, Lojander M (2011) Modeling time-dependent behaviour of soft sensitive clay. J Geotech Geoenviron Eng ASCE 137(11):1103–1113

    Article  Google Scholar 

  • Yu XP, Zhu WJ (2008) Rehabilitating construction for subway line 4 in Shanghai (in Chinese). Construction Machinery (2):16–26

  • Zhang AG, Wei ZX (2005) Prevention and cure with Shanghai land subsidence and city sustaining development. In: Zhang AG, Gong SL, Carbognin L, Johnson AI (eds) Land subsidence. Proceedings of the Seventh International Symposium on Land Subsidence, vol 1. Oct 22–28, 2005, Shanghai, pp 10–17

Download references

Acknowledgements

The research work described herein was funded by the National Nature Science Foundation of China (NSFC) (Grant No. 41102175 and No. 41072209). This work is a part of the first author’s PhD dissertation and this study was financially supported by Funding of Exceptional PhD dissertation of the Graduate School of Shanghai Jiao Tong University. These financial-support establishments are gratefully acknowledged. The authors would also like to express their sincere thanks to the anonymous reviewers and the editors for their detailed constructive comments, which were very helpful in improving the quality of the report.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Ma or Shui-Long Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, YS., Ma, L., Shen, SL. et al. Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeol J 20, 1623–1634 (2012). https://doi.org/10.1007/s10040-012-0892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0892-9

Keywords

Navigation