Skip to main content
Log in

Localized dissolution in sediments under stress

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Mineral dissolution and subsurface volume contraction can result from various natural and engineered subsurface processes. This study explores localized granular dissolution in sediments under constant vertical stress and zero lateral boundaries using 2D and 3D discrete element simulations to gather macro-scale and particle-scale information during dissolution. Local arches form when the dissolving inclusion size is similar to the grain size; however, granular chains buckle and grains flow to refill voids when dissolving inclusions are larger than the length scale of force chains (about 6-to-10 grain diameters). Force chains arch around the region that undergoes grain dissolution; interparticle contact forces are low within the contracting zone, yet are sufficient to provide transverse support to the major force chains. Higher granular interlocking leads to the formation of more pronounced force arches, results in higher internal porosity, and limits the vertical contraction. The vertical contraction and the global porosity increase proportionally to the lost solid volume, but remain below the upper bounds computed for dissolution at either constant internal porosity or constant global volume. The sediment porosity evolves towards a terminal porosity that is defined by granular interlocking; the minimum mass loss required to reach the terminal porosity can exceed 10-to-15%. The global stress ratio K0 decreases during the early state of dissolution and in sediments with high interlocking; otherwise, it evolves towards a steady value that can be as high as K0 ≈ 0.7 to 0.8; this stress ratio is compatible with the horizontal reaction required to stabilize the internal force arches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ahmadi, A., Seyedi Hosseininia, E.: An experimental investigation on stable arch formation in cohesionless granular materials using developed trapdoor test. Powder Technol. 330, 137–146 (2018)

    Article  Google Scholar 

  2. Angevine, C.L., Turcotte, D.L.: Porosity reduction by pressure solution—a theoretical-model for quartz arenites. Geol. Soc. Am. Bull. 94, 1129–1134 (1983)

    Article  ADS  Google Scholar 

  3. Bagi, K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granular Matter 7, 31–43 (2005)

    Article  MATH  Google Scholar 

  4. Bardet, J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)

    Article  Google Scholar 

  5. Berest, P., Brouard, B., Feuga, B., Karimi-Jafari, M.: The 1873 collapse of the Saint-Maximilien panel at the Varangeville salt mine. Int. J. Rock Mech. Min. Sci. 45, 1025–1043 (2008)

    Article  Google Scholar 

  6. Carrio-Schaffhauser, E., Raynaud, S., Latière, H.J., Mazerolle, F.: Propagation and localization of stylolites in limestones. Geol. Soc. 54, 193–199 (1990)

    Article  Google Scholar 

  7. Cha, M., Santamarina, J.C.: Predissolution and postdissolution penetration resistance. J. Geotech. Geoenviron. Eng. 139, 2193–2200 (2013)

    Article  Google Scholar 

  8. Cha, M., Santamarina, J.C.: Dissolution of randomly distributed soluble grains: post dissolution k0-loading and shear. Géotechnique 64, 828–836 (2014)

    Article  Google Scholar 

  9. Cha, M., Santamarina, J.C.: Effect of dissolution on the load-settlement behavior of shallow foundations. Can. Geotech. J. 53, 1353–1357 (2016)

    Article  Google Scholar 

  10. Cha, M., Santamarina, J.C.: Hydro-chemo-mechanical coupling in sediments: localized mineral dissolution. Geomech. Energy Environ. 7, 1–9 (2016)

    Article  Google Scholar 

  11. Criss, E.M., Criss, R.E., Osburn, G.R.: Effects of stress on cave passage shape in karst terranes. Rock Mech. Rock Eng. 41, 499–505 (2008)

    Article  ADS  Google Scholar 

  12. Croize, D., Bjorlykke, K., Jahren, J., Renard, F.: Experimental mechanical and chemical compaction of carbonate sand. J. Geophys. Res. Solid Earth 115, B11204 (2010)

    Article  ADS  Google Scholar 

  13. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  14. Davis, T., Healy, D., Bubeck, A., Walker, R.: Stress concentrations around voids in three dimensions: the roots of failure. J. Struct. Geol. 102, 193–207 (2017)

    Article  ADS  Google Scholar 

  15. Dreybrodt, W., Romanov, D., Gabrovsek, F.: Karstification below dam sites: a model of increasing leakage from reservoirs. Environ. Geol. 42, 518–524 (2002)

    Article  Google Scholar 

  16. Durelli, A.J., Parks, V.J., Feng, H.C.: Stresses around an elliptical hole in a finite plate subjected to axial loading. J. Appl. Mech. 33, 192–195 (1966)

    Article  ADS  Google Scholar 

  17. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 376–396 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Espinoza, D.N., Kim, S., Santamarina, J.C.: CO2 geological storage—geotechnical implications. KSCE J. Civ. Eng. 15, 707–719 (2011)

    Article  Google Scholar 

  19. Fam, M.A., Cascante, G., Dusseault, M.B.: Large and small strain properties of sands subjected to local void increase. J. Geotech. Geoenviron. Eng. 128, 1018–1025 (2002)

    Article  Google Scholar 

  20. Fletcher, R.C., Pollard, D.D.: Anticrack model for pressure solution surfaces. Geology 9, 419–424 (1981)

    Article  ADS  Google Scholar 

  21. Ford, D., Williams, P.W.: Karst Hydrogeology and Geomorphology. Wiley, Chichester (2007)

    Book  Google Scholar 

  22. Fowler, A.C., Yang, X.S.: Pressure solution and viscous compaction in sedimentary basins. J. Geophys. Res. Solid Earth 104, 12989–12997 (1999)

    Article  Google Scholar 

  23. Fredd, C., Miller, M.: Validation of carbonate matrix stimulation models. In: SPE international symposium on formation damage control, 2000. Society of Petroleum Engineers

  24. Freij-Ayoub, R., Tan, C., Clennell, B., Tohidi, B., Yang, J.H.: A wellbore stability model for hydrate bearing sediments. J. Petrol. Sci. Eng. 57, 209–220 (2007)

    Article  Google Scholar 

  25. Fukumoto, Y., Sakaguchi, H., Murakami, A.: The role of rolling friction in granular packing. Granular Matter 15, 175–182 (2013)

    Article  Google Scholar 

  26. Gillieson, D.S.: Caves: Processes, Development, and Management. Blackwell Publishers, Oxford (1996)

    Book  Google Scholar 

  27. Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)

    Article  ADS  MATH  Google Scholar 

  28. Goodman, R.E.: Introduction to Rock Mechanics. Wiley, New York (1989)

    Google Scholar 

  29. Guises, R., Xiang, J., Latham, J.-P., Munjiza, A.: Granular packing: numerical simulation and the characterisation of the effect of particle shape. Granular Matter 11, 281–292 (2009)

    Article  MATH  Google Scholar 

  30. Gutiérrez, F., Desir, G., Gutiérrez, M.: Causes of the catastrophic failure of an earth dam built on gypsiferous alluvium and dispersive clays (Altorricón, Huesca Province, NE Spain). Environ. Geol. 43, 842–851 (2003)

    Article  Google Scholar 

  31. Haimson, B.C.: Borehole breakouts in berea sandstone reveal a new fracture mechanism. Pure. appl. Geophys. 160, 813–831 (2003)

    Article  ADS  Google Scholar 

  32. Haimson, B.C., Song, I.: Laboratory study of borehole breakouts in Cordova Cream: a case of shear failure mechanism. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 1047–1056 (1993)

    Article  Google Scholar 

  33. Haq, B.U., Hardenbol, J., Vail, P.R.: Chronology of fluctuating sea levels since the triassic. Science 235, 1156–1167 (1987)

    Article  ADS  Google Scholar 

  34. Harris, M.K., Thayer, P.A., Amidon, M.B.: Sedimentology and depositional environments of middle Eocene terrigenous-carbonate strata, southeastern Atlantic Coastal Plain, USA. Sed. Geol. 108, 141–161 (1997)

    Article  Google Scholar 

  35. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. ASCE 124, 285–292 (1998)

    Article  Google Scholar 

  36. Jaeger, J.C., Cook, N.G., Zimmerman, R.: Fundamentals of Rock Mechanics. Wiley, New York (2009)

    Google Scholar 

  37. Katsman, R., Aharonov, E., Scher, H.: Localized compaction in rocks: Eshelby’s inclusion and the spring network model. Geophys. Res. Lett. 33, L10311 (2006)

    Article  ADS  Google Scholar 

  38. Katsman, R., Aharonov, E., Scher, H.: A numerical study on localized volume reduction in elastic media: some insights on the mechanics of anticracks. J. Geophys. Res. Solid Earth 111, B03204 (2006)

    Article  ADS  Google Scholar 

  39. Kim, S., Espinoza, D.N., Jung, J., Cha, M., Santamarina, J.C.: Chapter 17—Carbon geological storage: coupled processes, engineering and monitoring. In: Newell, P., Ilgen, A.G. (eds.) Science of Carbon Storage in Deep Saline Formations. Elsevier, Amsterdam (2019)

    Google Scholar 

  40. Ku, T., Moon, S.-W., Gutierrez, B.J.: Advanced application of seismic cone penetration test at complex ground conditions. Eng. Geol. 210, 140–147 (2016)

    Article  Google Scholar 

  41. Kuhn, M.R., Mitchell, J.K.: New perspectives on soil-creep. J. Geotech. Eng. ASCE 119, 507–524 (1993)

    Article  Google Scholar 

  42. Kvamme, B., Liu, S.: Reactive transport of CO2 in saline aquifers with implicit geomechanical analysis. Energy Proc. 1, 3267–3274 (2009)

    Article  Google Scholar 

  43. Ledesert, B., Hebert, R., Genter, A., Bartier, D., Clauer, N., Grall, C.: Fractures, hydrothermal alterations and permeability in the Soultz Enhanced Geothermal System. C.R. Geosci. 342, 607–615 (2010)

    Article  ADS  Google Scholar 

  44. Lee, J.Y., Santamarina, J.C., Ruppel, C.: Volume change associated with formation and dissociation of hydrate in sediment. Geochem. Geophys. Geosyst. 11, 1–13 (2010)

    Article  Google Scholar 

  45. Leeman, E.R.: The CSIR “doorstopper” and triaxial rock stress measuring instruments. Rock Mech. Rock Eng. 3, 25–50 (1971)

    Article  Google Scholar 

  46. Lu, M., McDowell, G.: The importance of modelling ballast particle shape in the discrete element method. Granular Matter 9, 69–80 (2007)

    Article  Google Scholar 

  47. Mayne, P.W., Kulhawy, F.H.: Ko–OCR relationships in soil. J. Geotech. Eng. Div. ASCE 108, 851–872 (1982)

    Google Scholar 

  48. McDowell, G.R., Khan, J.J.: Creep of granular materials. Granular Matter 5, 115–120 (2003)

    Article  Google Scholar 

  49. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  50. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials. Granular Matter 12, 527–541 (2010)

    Article  MATH  Google Scholar 

  51. Narsilio, G.A., Santamarina, J.C.: Terminal densities. Geotechnique 58, 669–674 (2008)

    Google Scholar 

  52. Niemeijer, A., Spiers, C.J., Bos, B.: Compaction creep of quartz sand at 400–600 °C: experimental evidence for dissolution-controlled pressure solution. Earth Planet. Sci. Lett. 195, 261–275 (2002)

    Article  ADS  Google Scholar 

  53. Nystrom, P.G., Willoughby, R.H., Price, L.K.: Cretaceous and Tertiary Stratigraphy of the Upper Coastal Plain, South Carolina. University of Tennessee Press, Knoxville (1991)

    Google Scholar 

  54. Park, W.C., Schot, E.H.: Stylolites: their nature and origin. J. Sediment. Res. 38, 175–191 (1968)

    Google Scholar 

  55. Payton, C.C., Hansen, M.N.: Gypsum karst in southwestern Utah: failure and reconstruction of Quail Creek Dike. In: Johnson, K.S., Neal, J.T. (eds.) Evaporite Karst and Engineering/Environmental Problems in the United States. University of Oklahoma, Norman (2003)

    Google Scholar 

  56. Pollard, D.D., Fletcher, R.C.: Fundamentals of Structural Geology. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  57. Renard, F., Gundersen, E., Hellmann, R., Collombet, M., le Guen, Y.: Numerical modeling of the effect of carbon dioxide sequestration on the rate of pressure solution creep in limestone: preliminary results. Oil Gas Sci. Technol. 60, 381–399 (2005)

    Article  Google Scholar 

  58. Roded, R., Paredes, X., Holtzman, R.: Reactive transport under stress: permeability evolution in deformable porous media. Earth Planet. Sci. Lett. 493, 198–207 (2018)

    Article  ADS  Google Scholar 

  59. Rutter, E.H.: Pressure solution in nature, theory and experiment. J. Geol. Soc. 140, 725–740 (1983)

    Article  ADS  Google Scholar 

  60. Shin, H., Hung Truong, Q., Lee, J.-S., Choo, H., Lee, C.: Evolution of pore structure and hydraulic conductivity of randomly distributed soluble particle mixture. Int. J. Numer. Anal. Meth. Geomech. 42, 768–780 (2018)

    Article  Google Scholar 

  61. Shin, H., Santamarina, J.C.: Mineral dissolution and the evolution of k0. J. Geotech. Geoenviron. Eng. 135, 1141–1147 (2009)

    Article  Google Scholar 

  62. Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. 71, 350–358 (2004)

    Article  ADS  MATH  Google Scholar 

  63. Sultan, N., Cochonat, P., Canals, M., Cattaneo, A., Dennielou, B., Haflidason, H., Laberg, J.S., Long, D., Mienert, J., Trincardi, F., Urgeles, R., Vorren, T.O., Wilson, C.: Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach. Mar. Geol. 213, 291–321 (2004)

    Article  ADS  Google Scholar 

  64. Tada, R., Siever, R.: Pressure solution during diagenesis. Annu. Rev. Earth Planet. Sci. 17, 89–118 (1989)

    Article  ADS  Google Scholar 

  65. Taron, J., Elsworth, D.: Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs. Int. J. Rock Mech. Min. Sci. 46, 855–864 (2009)

    Article  Google Scholar 

  66. Toussaint, R., Aharonov, E., Koehn, D., Gratier, J.P., Ebner, M., Baud, P., Rolland, A., Renard, F.: Stylolites: a review. J. Struct. Geol. 114, 163–195 (2018)

    Article  ADS  Google Scholar 

  67. Tran, M.K., Shin, H., Byun, Y.-H., Lee, J.-S.: Mineral dissolution effects on mechanical strength. Eng. Geol. 125, 26–34 (2012)

    Article  Google Scholar 

  68. Truong, Q.H., Eom, Y.H., Lee, J.S.: Stiffness characteristics of soluble mixtures. Géotechnique 60, 293–297 (2010)

    Article  Google Scholar 

  69. Valdes, J.R., Santamarina, J.C.: Clogging: bridge formation and vibration-based destabilization. Can. Geotech. J. 45, 177–184 (2008)

    Article  Google Scholar 

  70. Vogt, P.R., Jung, W.Y.: Holocene mass wasting on upper non-Polar continental slopes—due to post-Glacial ocean warming and hydrate dissociation? Geophys. Res. Lett. 29, 1–4 (2002)

    Article  Google Scholar 

  71. Waltham, T.: Foundations of Engineering Geology. Spon Press, New York, NY (2009)

    Google Scholar 

  72. Waltham, T., Park, H.D., Suh, J., Yu, M.H., Kwon, H.H., Bang, K.M.: Collapses of old mines in Korea. Eng. Geol. 118, 29–36 (2011)

    Article  Google Scholar 

  73. Wang, J., Yu, H.S., Langston, P., Fraige, F.: Particle shape effects in discrete element modelling of cohesive angular particles. Granular Matter 13, 1–12 (2011)

    Article  Google Scholar 

  74. Watson, M.N., Boreham, C.J., Tingate, P.R.: Carbon dioxide and carbonate cements in the Otway Basin: implications for geological storage of carbon dioxide. APPEA J. 44, 703–720 (2004)

    Article  Google Scholar 

  75. Yun, T.S., Santamarina, J.C.: Decementation, softening, and collapse: changes in small-strain shear stiffness in k0 loading. J. Geotech. Geoenviron. Eng. 131, 350–358 (2005)

    Article  Google Scholar 

  76. Zheng, Z., Kemeny, J., Cook, N.G.W.: Analysis of borehole breakouts. J. Geophys. Res. Solid Earth 94, 7171–7182 (1989)

    Article  Google Scholar 

  77. Zoback, M.D., Moos, D., Mastin, L., Anderson, R.N.: Well bore breakouts and in situ stress. J. Geophys. Res. Solid Earth 90, 5523–5530 (1985)

    Article  Google Scholar 

  78. Zuriguel, I., Garcimartín, A., Maza, D., Pugnaloni, L.A., Pastor, J.: Jamming during the discharge of granular matter from a silo. Phys. Rev. E 71, 051303 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the Department of Energy Savannah River Operations Office led by Dr. B. Gutierrez. Additional support was provided by the Goizueta Foundation and the KAUST endowment. The authors are grateful to the anonymous reviewers for insightful comments. G. Abelskamp edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsu Cha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (AVI 32262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, M., Santamarina, J.C. Localized dissolution in sediments under stress. Granular Matter 21, 79 (2019). https://doi.org/10.1007/s10035-019-0932-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0932-4

Keywords

Navigation