Skip to main content
Log in

Granular flows on erodible and non erodible inclines

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular flows occur in nature on hard surfaces but more frequently on erodible layers of different origin, thickness and properties. Experimental test results are available for testing analytical and numerical solutions, validating them and the definition of the material properties. A series of numerical simulations was performed via FEM analyses considering the granular material to behave as an elasto-plastic Mohr–Coulomb solid. The obtained results were compared with experimental observations of spreading over horizontal and inclined chutes, on both rigid and erodible layers. It turns out that the numerical model is able to capture the influence of the test geometry in case of both rigid and erodible surfaces, but it fails to replicate the excessive runout observed in the presence of layers close to the critical slope angle. It is suggested that this difference could be originated by the meta-stable conditions in which erodible layers are deposited in the experiments considered from the literature. For granular flows moving over a rigid surface both runout and peak front velocity increase with the column aspect ratio, whereas runout increases more rapidly for chute slope larger than \(15^{\circ }\), in agreement with published experimental results. Much more complex is the understanding of granular flows over erodible layers. The simulations replicate the generation of waves due to the erosion of the erodible layer, as well the sequential formation of multiple shear bands inside the collapsing column causing the rapid release of multiple subvolumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ancey, C.: Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  2. Balmforth, N.J., Kerswell, R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Blikra, L.H., Longva, O., Braathen, A., Anda, E., Dehls, J., Stalsberg, K.: Rock-slope failures in Norwegian fjord areas: examples, spatial distribution and temporal pattern. In: Evans, S.G., Scarascia Mugnozza, G., Strom, A.L., Hermanns, R.L. (eds.) Landslides from Massive Rock Slope Failure. Nato Science Series IV, Earth and Environmental Sciences, vol. 49, pp. 475–496. Springer, Netherland (2006)

  4. Bolton, M.D.: The strength and dilatancy of sands. Geotechnique 36(1), 65–78 (1986)

    Article  Google Scholar 

  5. Borzsonyi, T., Halsey, T.C., Ecke, R.E.: Two scenarios for avalanche dynamics in inclined granular layers. Phys. Rev. Lett. 94, 208001 (2005)

    Article  ADS  Google Scholar 

  6. Borzsonyi, T., Halsey, T.C., Ecke, R.E.: Avalanche dynamics on a rough inclined plane. Phys. Rev. E 78, 011306 (2008)

    Article  ADS  Google Scholar 

  7. Bouchut, F., Fernandez-Nieto, E.D., Mangeney, A., Lagrée, P.-Y.: On new erosion models of Savage–Hutter type for avalanches. Acta Mech. 199, 181–208 (2008). doi:10.1007/s00707-007-0534-9

    Article  MATH  Google Scholar 

  8. Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterials using elastic-plastic soil constituive model. Int. J. Numer. Anal. Meth. Geomech. (2008). doi:10.1002/nag.688

    Google Scholar 

  9. Chen, H., Lee, C.F.: Numerical simulation of debris flows. Can. Geotech. J. 37(1), 146–160 (2000)

    Article  Google Scholar 

  10. Chen, H., Crosta, G.B., Lee, C.F.: Erosional effects on runout of fast landslides, debris flows and avalanches: a numerical investigation. Geotechnique 56(5), 305–322 (2006)

    Article  Google Scholar 

  11. Crosta, G.B.: An example of unusual complex landslide:from a rockfall to a dry granular flow? Geol. Rom. 30, 175–184 (1994)

    MathSciNet  Google Scholar 

  12. Crosta, G.B., Imposimato, S., Roddeman, D.G.: Numerical modelling of large landslides stability and runout. Nat. Hazards Earth Syst. Sci. 3(6), 523–538 (2003)

    Article  ADS  Google Scholar 

  13. Crosta, G.B., Chen, H., Lee, C.F.: Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology 60(1–2), 127–146 (2004)

    Article  ADS  Google Scholar 

  14. Crosta, G.B., Imposimato, S., Roddeman, D., Chiesa, S., Moia, F.: Small fast moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador). Eng. Geol. 79(3–4), 185–214 (2005)

    Article  Google Scholar 

  15. Crosta, G.B., Imposimato, S., Roddeman, D.G.: Continuum numerical modelling of flow-like landslides. NATO ARW, Landslides from massive rock slope failure, In: Evans, S.G., Scarascia Mugnozza, G., Strom, A., Hermanns, R., (eds.) NATO Science Series, Earth and Environmental Sciences, vol. 49, pp. 211–232. Springer, Netherland (2006a)

  16. Crosta, G.B., Chen, H., Frattini, P.: Forecasting hazard scenarios and implications for the evaluation of countermeasure efficiency for large debris avalanches. Eng. Geol. 83(1), 236–253 (2006b)

    Article  Google Scholar 

  17. Crosta, G.B., Imposimato, S., Roddeman, D.G.: Approach to numerical modelling of long runout landslides. In: Hong Kong, GCO, Dec. 2007, Proceedings of International Forum on Landslide Disaster Management, Landslide Runout Analysis Benchmarking Exercise (2008a)

  18. Crosta, G.B., Imposimato, S., Roddeman, D.G.: Numerical modelling of entrainment/deposition in rock and debris-avalanches. Eng. Geol. (2008). doi:10.1016/j.enggeo.2008.10.004

    Google Scholar 

  19. Crosta, G.B., Imposimato, S., Roddeman, D.: Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface. J. Geophys. Res. 114, F03020 (2009)

    ADS  Google Scholar 

  20. Crosta, G.B., Imposimato, S., Roddeman, D.: Interaction of landslide mass and water resulting in impulse waves. In: Margottini, C., Canuti, P., Sassa, K. (eds.) Landslide Science and Practice. Complex Environment, vol. 5, pp. 49–56. Springer, Heidelberg New York Dordrecht London (2013a). doi:10.1007/978-3-642-31427-8. ISBN 978-3-642-31426-1, 28

  21. Crosta, G.B., Imposimato, S., Roddeman, D., Frattini, P.: On controls of flow-like landslide evolution by an erodible layer. In: Margottini, C., Canuti, P., Sassa, K. (eds.) Landslide Science and Practice. Spatial Analysis and Modelling, vol. 3, pp. 263–270. Springer, Heidelberg New York Dordrecht London (2013b). doi:10.1007/978-3-642-31427-8. ISBN 978-3-642-31426-1, 28

  22. Crosta, G.B., Imposimato, S., Roddeman, D.: Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech. Rock Eng. 2015, 769 (2015). doi:10.1007/s00603-015-0769-z

    Google Scholar 

  23. Denlinger, R.P., Iverson, R.M.: Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J. Geophys. Res. 106(B1), 553–566 (2001)

    Article  ADS  Google Scholar 

  24. Denlinger, R.P., Iverson, R.M.: Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J. Geophys. Res. 109, F01014 (2004). doi:10.1029/2003JF000085

    ADS  Google Scholar 

  25. Doyle, E.E., Huppert, H.E., Lube, G., Mader, H.M., Sparks, S.J.: Static and flowing regions in granular collapses down channels: insights from a sedimenting shallow water model. Phys. Fluids 19, 106601 (2007)

    Article  ADS  Google Scholar 

  26. Eglit, M., Demidov, K.: Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43, 10–23 (2005)

    Article  Google Scholar 

  27. Faccanoni, G., Mangeney, A.: Exact solution for granular flows. Int. J. Numer. Anal. Methods Geomech. 37(10), 1408–1433 (2013)

    Article  Google Scholar 

  28. Farin, M., Mangeney, A., Roche, O.: Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. J. Geophys. Res. Earth Surf. 119, 504–532 (2014). doi:10.1002/2013JF002750

    Article  ADS  Google Scholar 

  29. Fernandez Merodo, J.A., Mira, P., Pastor, M.: Numerical Modelling of a Granular Step Collapse Using the Material Point Method. Geophysical Research Abstracts, vol. 16, EGU2014-16016, 2014, EGU General Assembly 2014 (2014)

  30. Gardner, J.S.: Observations on erosion by wet snow avalanches, Mount Rae area, Alberta, Canada. Arct. Alp. Res. 15(2), 271–274 (1983)

    Article  Google Scholar 

  31. Gauer, P., Issler, D.: Possible erosion mechanisms in snow avalanches. Ann. Glaciol. 38, 384–392 (2004)

    Article  ADS  Google Scholar 

  32. Holsapple, K.A.: Modeling granular material flows: the angle of repose, fluidization and the cliff collapse problem. Planet. Space Sci. 82–83, 11–26 (2013)

    Article  Google Scholar 

  33. Hungr, O.: A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 32, 610–623 (1995)

    Article  Google Scholar 

  34. Hutter, K., Siegel, M., Savage, S.B., Nohguchi, Y.: Two-dimensional spreading of a granular avalanche down an inclined plane. I. Theory. Acta Mech. 100, 37–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ionescu, I., Mangeney, A., Bouchut, F., Roche, O.: Viscoplastic modelling of granular column collapse with pressure and rate dependent viscosity. J. Non-Newtonian Fluid Mech. 219, 1–18 (2015)

    Article  Google Scholar 

  36. Issler, D.: Modelling of snow entrainment and deposition in powder-snow avalanches. Ann. Glaciol. 26, 253–258 (1998)

    ADS  Google Scholar 

  37. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain: part I: Coulomb mixture theory. J. Geophys. Res. 106, 537–552 (2001)

    Article  ADS  Google Scholar 

  38. Iverson, R.M.: Elementary theory of bed-sediment entrainment by debris flows and avalanches. J. Geophys. Res. 117, F03006 (2012). doi:10.1029/2011JF002189

    ADS  Google Scholar 

  39. Johnson, C.G., Kokelaar, B.P., Iverson, R.M., Logan, M., LaHusen, R.G., Gray, J.M.N.T.: Grain-size segregation and levee formation in geophysical mass flows. J. Geophys. Res. (2012). doi:10.1029/2011JF002185

    Google Scholar 

  40. Jop, P., Forterre, Y., Pouliquen, O.: Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167–192 (2005). doi:10.1017/S0022112005005987

    Article  ADS  MATH  Google Scholar 

  41. Kerswell, R.R.: Dam break with Coulomb friction: A model for granular slumping? Phys. Fluids 17, 057101 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  42. Lacaze, L., Phillips, J.C., Kerswell, R.R.: Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20, 063302 (2008)

    Article  ADS  Google Scholar 

  43. Lagrée, P.Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a \(\upmu \) (i)-rheology. J. Fluid Mech. 686, 378–408 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Lajeunesse, E., Mangeney-Castelnau, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16, 2371 (2004)

    Article  ADS  Google Scholar 

  45. Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)

    Article  ADS  Google Scholar 

  46. Larrieu, E., Staron, L., Hinch, E.J.: Raining into shallow water as a description of the collapse of a column of grains. J. Fluid Mech. 554, 259–270 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Legros, F.: The mobility of long-runout landslides. Eng. Geol. 63, 301–331 (2002)

    Article  Google Scholar 

  48. Liu, Q.B., Lehane, B.M.: The influence of particle shape on the (centrifuge) cone penetration test (CPT) end resistance in uniformly graded granular soils. Geotechnique 62(11), 973–984 (2012)

    Article  Google Scholar 

  49. Lube, G.: The flow and depositional mechanisms of granular matter: Experimental and field studies with implications for pyroclastic flows. Ph.D. Thesis, Univesity of Kiel (2006)

  50. Lube, G., Huppert, H., Sparks, S., Hallworth, M.: Axisymmetric collapse of granular columns. J. Fluid Mech. 508, 175–199 (2004)

    Article  ADS  MATH  Google Scholar 

  51. Lube, G., Huppert, H., Sparks, S., Freundt, A.: Static and flowing regions in granular collapses down channels. Phys. Fluids 19, 043301 (2007)

    Article  ADS  Google Scholar 

  52. Lube, G., Huppert, H., Sparks, S., Freundt, A.: Collapses of two-dimensional granular columns. Phys. Rev. E 72, 041301 (2005)

    Article  ADS  Google Scholar 

  53. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Granular column collapses down rough, inclined channels. J. Fluid Mech. 675, 347–368 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Mangeney, A., Heinrich, Ph, Roche, R.: Analytical solution for testing debris avalanche numerical models. Pure Appl. Geophys. 157, 1081–1096 (2000)

    Article  ADS  Google Scholar 

  55. Mangeney-Castelnau, A., Vilotte, J.-P., Bristeau, M.O., Perthame, B., Bouchut, F., Simeoni, C., Yerneni, S.: Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 118, 2527 (2003)

    Article  Google Scholar 

  56. Mangeney-Castelnau, A., Bouchut, B., Vilotte, J.P., Lajeunesse, E., Aubertin, A., Pirulli, M.: On the use of Saint-Venant equations for simulating the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)

    ADS  Google Scholar 

  57. Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J.P., Bristeau, M.O.: Numerical modeling of self-channeling granular flows and of their levee–channel deposits. J. Geophys. Res. 112, F02017 (2007a)

    ADS  Google Scholar 

  58. Mangeney-Castelnau, A., Tsimring, L.S., Volfson, D., Aranson, I.S., Bouchut, B.: Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett 34, L22401 (2007b)

    Article  ADS  Google Scholar 

  59. Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A.: Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. 115, F03040 (2010). doi:10.1029/2009JF001462

    ADS  Google Scholar 

  60. MIDI GDR: On dense granular flows. Groupement De Recherche Milieux Divisés. Eur. Phys. J. E 14, 341–365 (2004). doi:10.1140/epje/i2003-10153-0

  61. Mortimore, R.N., Duperret, A. (eds).: Coastal chalk cliff instability. In: Geological Society London, Engineering Geology Special Publications, vol. 20 (2004)

  62. Pastor, M., Fernandez Merodo, J.A., Quecedo, M., Herreros, M.I., Gonzales, E., Mira, P.: Modelling of debris flows and flow slides. Numer. Modell. Geomech. 6, 1213–1232 (2002)

    Google Scholar 

  63. Pitman, E.B., Nichita, C.C., Patra, A.K., Bauer, A.C., Bursik, M., Weber, A.: A model of granular flows over an erodible surface. Discrete Contin. Dyn. Syst. B 3, 589 (2003)

    Article  MATH  Google Scholar 

  64. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

    Article  ADS  MATH  Google Scholar 

  66. Pouliquen, O., Cassar, C., Jop, P., Forterre, Y., Nicolas, M.: Flow of dense granular material: towards simple constitutive laws. J. Stat. Mech. Theory Exp. 1742-5468/06/P07020 (2006)

  67. Pudasaini, S.P., Hutter, K.: Avalanche Dynamics, Dynamics of Rapid Flows of Dense Granular Avalanches. Springer, NewYork (2007)

    Google Scholar 

  68. Rastello, M., Ancey, C., Ousset, F., Magnard, R., Hopfinger, E.J.: An experimental study of particle-driven gravity currents on steep slopes with entrainment of particles. Nat. Hazards Earth Sys. Sci. 2, 181–185 (2002)

    Article  ADS  Google Scholar 

  69. Roddeman, D.G.: TOCHNOG User’s Manual. FEAT. www.feat.nl/manuals/user/user.html (2008)

  70. Rowley, P.J., Kokelaar, P., Menzies, M., Waltham, D.: Shear-derived mixing in dense granular flows. J. Sediment. Res. 81, 874–884 (2011)

    Article  ADS  Google Scholar 

  71. Sailer, R., Fellin, W., Fromm, R., Jorg, P., Rammer, L., Sampl, P., Schaffauser, A.: Snow avalanche mass-balance calculation and simulation-model verification. Ann. Glaciol. 48, 183–192 (2008)

    Article  ADS  Google Scholar 

  72. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989)

  73. Siavoshi, S., Kudrolli, A.: Failure of a granular step. Phys. Rev. E 71, 051302 (2005)

    Article  ADS  Google Scholar 

  74. Sosio, R., Crosta, G.B., Hungr, O.: Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng. Geol. 100(1), 11–26 (2008)

    Article  Google Scholar 

  75. Sovilla, B., Bartelt, P.: Observations and modelling of snow avalanche entrainment. Nat. Hazards Earth Syst. Sci. 2(3–4), 169–179 (2002)

    Article  ADS  Google Scholar 

  76. Staron, L., Hinch, J.: Study of the collapse of granular columns using DEM numerical simulation. J. Fluid Mech. 545, 1–27 (2005)

    Article  ADS  MATH  Google Scholar 

  77. Staron, L.: Mobility of long-runout rock flows: a discrete numerical investigation. Geophys. J. Int. 172, 455–463 (2008)

    Article  ADS  Google Scholar 

  78. Utili, S., Crosta, G.B.: Modelling the evolution of natural slopes subject to weathering: Part II. Discrete element approach. J. Geophys. Res. Earth Surf. 116, F01017 (2011). doi:10.1029/2009JF001559

    ADS  Google Scholar 

  79. Utili, S., Zhao, T., Houlsby, G.T.: DEM investigation of debris flow from column granular collapse: evaluation of debris motion and its destructive power. Eng. Geol. (2014). doi:10.1016/j.enggeo.2014.08.018

    Google Scholar 

  80. Zenit, R.: Computer simulation of the collapse of granular columns. Phys. Fluids 17, 031 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The research has been partially funded through a Research Grant of the Italian Ministry of Research and Education MIUR-PRIN project: Time – Space prediction of high impact landslides under changing precipitation regimes. The data has never been published before and the authors share responsability for all the analyses and agreed about the publication of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Crosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crosta, G.B., Imposimato, S. & Roddeman, D. Granular flows on erodible and non erodible inclines. Granular Matter 17, 667–685 (2015). https://doi.org/10.1007/s10035-015-0587-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0587-8

Keywords

Navigation