Skip to main content
Log in

Particle finite element analysis of the granular column collapse problem

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The problem of granular column collapse is investigated by means of an axisymmetric version of the particle finite element method (PFEM). The granular medium is represented by a simple rate-independent plasticity model and the frictional contact between the granular flow and its rigid basal surface is accounted for. In the version of the PFEM developed for this study, the governing equations of the boundary value problem are cast in terms of an optimization problem and solved using mathematical programming tools. The agreement between model and experiment is generally satisfactory, quantitatively as well as qualitatively. However, the friction angle of the granular material, as well as the exact interface conditions between the base and granular material, are shown to have a relatively significant influence on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lube, G., Huppert, H.E., Sparks, R.S.J., Hallworth, M.A.: Axisymmetric collapse of granular columns. J. Fluid Mech. 508, 175–199 (2004)

    Article  ADS  MATH  Google Scholar 

  2. Lajeunesse, E., Mangeney-Castelneau, A., Vilotte, J.P.: Spreading of a granular mass on a horizontal plane. Phys. Fluids 16, 2731–2381 (2004)

    Article  Google Scholar 

  3. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Collapse of two-dimensional granular columns. Phys. Rev. E 72, 041301 (2005)

    Article  ADS  Google Scholar 

  4. Balmforth, N.J., Kerswell, R.R.: Granular collapse in two dimensions. J. Fluid Mech. 538, 399–428 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17, 103302 (2005)

    Article  ADS  Google Scholar 

  6. Roche, O., Attali, M., Mangeney, A., Lucas, A.: On the run-out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311(3–4), 375–385 (2011)

    Article  ADS  Google Scholar 

  7. Thompson, E.L., Huppert, H.E.: Granular column collapses: further experimental results. J. Fluid Mech. 575, 177–186 (2007)

    Article  ADS  MATH  Google Scholar 

  8. Rondon, L., Pouliquen, O., Aussillous, P.: Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23, 073301 (2011)

    Article  ADS  Google Scholar 

  9. Hogg, A.J.: Two-dimensional granular slumps down slopes. Phys. Fluids 19, 093301 (2007)

    Article  ADS  Google Scholar 

  10. Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A. : Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. Earth Surface 115, F03040 (2010)

  11. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Granular column collapses down rough, inclined channels. J. Fluid Mech. 675, 347–368 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Meriaux, C.: Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall. Phys. Fluids 18, 093301 (2006)

    Article  ADS  Google Scholar 

  13. Owen, P.J., Cleary, P.W., Meriaux, C.: Quasi-static fall of planar granular columns: comparison of 2D and 3D discrete element modelling with laboratory experiments. Geomech. Geoeng. Int. J. 4, 55–77 (2009)

    Article  Google Scholar 

  14. Staron, L., Hinch, E.J.: Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J. Fluid Mech. 545, 1–27 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Zenit, R.: Computer simulations of the collapse of a granular column. Phys. Fluids 17, 031730 (2005)

    Article  Google Scholar 

  16. Staron, L., Hinch, E.J.: The spreading of a granular mass: role of grain properties and initial conditions. Granul. Matter 9, 205–217 (2007)

    Article  MATH  Google Scholar 

  17. Lacaze, L., Philips, J.C., Kerswell, R.R.: Planar collapse of a granular column: experiments and discrete element simulations. Phys. Fluids 20, 063302 (2008)

    Article  ADS  Google Scholar 

  18. Krabbenhoft, K., Lyamin, A.V., Huang, J., da Silva, M.V.: Granular contact dynamics using mathematical programming methods. Comput. Geotech. 43, 165–176 (2012)

    Article  Google Scholar 

  19. Huang, J., da Silva, M.V., Krabbenhoft, K.: Three-dimensional granular contact dynamics with rolling resistance. Comput. Geotech. 49, 289–298 (2013)

    Article  Google Scholar 

  20. Kerswell, R.R.: Dam break with coulomb friction: a model for granular slumping? Phys. Fluids 17, 057101 (2005)

  21. Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E., Aubertin, A., Pirulli, M.: On the use of saint venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)

    ADS  Google Scholar 

  22. Lacaze, L., Kerswell, R.R.: Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102, 108305 (2009)

    Article  ADS  Google Scholar 

  23. Crosta, G.B., Imposimato, S., Roddeman, D.: Numerical modeling of 2D granular step collapse on erodible and nonerodible surface. Journal of Geophysical Research: Earth Surface 114, F03020 (2009)

    Article  ADS  Google Scholar 

  24. Lagree, P.Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a \(\mu (I)\)-rheology. J. Fluid Mech. 686, 378–408 (2011)

  25. Chen, W., Qiu, T.: Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int. J. Geomech. 12(2), 127–135 (2012)

    Article  Google Scholar 

  26. Zhang, X., Krabbenhoft, K., Pedroso, D.M., Lyamin, A.V., Sheng, D., da Silva, M.V., Wang, D.: Particle finite element analysis of large deformation and granular flow problems. Comput. Geotech. 54, 133–142 (2013)

    Article  Google Scholar 

  27. MiDi, G.D.R.: On dense granular flows. The Eur. Phys. J. E 14, 341–365 (2004)

    Article  Google Scholar 

  28. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  29. Edelsbrunner, H., Mucke, E.P.: Three dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  30. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Mills, P., Loggia, D., Tixier, M.: Model for a stationary dense granular flow along an inclined wall. Planet. Space Sci. 45, 733–738 (1999)

    Google Scholar 

  32. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000)

  33. Krabbenhoft, K., Huang, J., da Silva, M.V., Lyamin, A.V.: Granular contact dynamics with particle elasticiy. Granul. Matter 14, 607–619 (2012)

    Article  Google Scholar 

  34. Krabbenhoft, K., Lyamin, A.V., Sloan, S.W.: Formulation and solution of some plasticity problems as conic programs. Int. J. Solids Struct. 44, 1533–1549 (2007)

  35. Krabbenhoft, K., Lyamin, A.V., Sloan, S.W., Wriggers, P.: An interior-point method for elastoplasticity. Int. J. Numer. Meth. Eng. 69, 592–626 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Krabbenhoft, K., Damkilde, L.: A general nonlinear optimization algorithm for lower bound limit analysis. Int. J. Numer. Meth. Eng. 56, 165–184 (2003)

    Article  MATH  Google Scholar 

  37. Krabbenhoft, K., Karim, M.R., Lyamin, A.V., Sloan, S.W.: Associated computational plasticity schemes for nonassociated frictional materials. Int. J. Numer. Meth. Eng. 89, 1089–1117 (2012)

    Article  MathSciNet  Google Scholar 

  38. Krabbenhoft, K., Lyamin, A.V.: Computational cam clay plasticity using second-order cone programming. Comput. Methods Appl. Mech. Eng. 209–212, 239–249 (2012)

    Article  MathSciNet  Google Scholar 

  39. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95, 249–277 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  40. Onate, E., Idelsohn, S.R., Pin, F.D., Aubry, R.: The particle finite element method. An overview. Int. J. Numer. Meth. Eng. 1, 267–307 (2004)

    MATH  Google Scholar 

  41. Cremonesi, M., Frangi, A., Perego, U.: A lagrangian finite element approach for the analysis of fluid-structure interaction problems. Int. J. Numer. Meth. Eng. 84, 610–630 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Krabbenhoft.

Euler-Lagrangian equations

Euler-Lagrangian equations

The equivalence between the optimization problem (13) and the governing equations described in Sect. 3 are verified by showing that the Euler-Lagrange equations associated with (13) do indeed reproduce the governing equations. To this end, the inequality constraints in (13) are first converted into equality constraints by subtraction of positively restricted slack variables \(\varvec{s}\):

$$\begin{aligned}&\underset{\Delta \varvec{u}}{\text {min}}\,\,\underset{(\varvec{\sigma },\varvec{r})_{n+1}}{\text {max}} \langle \varvec{\sigma }_{n+1}, {{\varvec{L}} (\Delta {\varvec{u}})}\rangle _\varOmega - \langle \tilde{\varvec{b}},\Delta \varvec{u} \rangle _\varOmega - \langle \tilde{\varvec{t}},\Delta \varvec{u}\rangle _\varGamma \nonumber \\&-\,\frac{1}{2}\Delta t^2\langle \varvec{r}_{n+1},{\tilde{\rho }}{}^{-1}\varvec{r}_{n+1}\rangle _\varOmega + \langle \varvec{r}_{n+1},\Delta \varvec{u}\rangle _\varOmega +\beta \,\Sigma _{I \in \mathcal {C}}\ln s^I\nonumber \\&\text {subject to} F(\varvec{\sigma }_{n+1}) +\varvec{s} = 0 \end{aligned}$$
(27)

where \(\beta \) is an arbitrarily small constant and \(\mathcal {C}\) is the set of stress integration points. The logarithmic barrier function eliminates the need to make explicit reference to the non-negativity requirement on s. The standard Lagrange multiplier technique then applies, i.e. the solution to (27) is found by requiring stationarity of the following functional:

$$\begin{aligned} J&= \langle \varvec{\sigma }_{n+1},\varvec{L}(\Delta \varvec{u})\rangle _\varOmega - \langle \tilde{\varvec{b}},\Delta \varvec{u} \rangle _\varOmega - \langle \tilde{\varvec{t}},\Delta \varvec{u}\rangle _\varGamma \nonumber \\&-\, \frac{1}{2}\Delta t^2\langle \varvec{r}_{n+1},{\tilde{\rho }}{}^{-1}\varvec{r}_{n+1}\rangle _\varOmega + \langle \varvec{r}_{n+1},\Delta \varvec{u}\rangle _\varOmega \nonumber \\&+\,\beta \,\Sigma _{I \in \mathcal {C}}\ln s^I -\Delta \varvec{\lambda }(F(\varvec{\sigma }_{n+1})+\varvec{s}) \end{aligned}$$
(28)

where \(\varvec{\Delta }\varvec{\lambda }\) are Lagrange multipliers. The stationary conditions are given by

$$\begin{aligned}&{\displaystyle \frac{\delta J}{\delta \Delta \varvec{u}}} = \left\{ \begin{array}{lll} \varvec{S}^\mathsf{{\tiny T} }\varvec{\sigma }_{n+1} + \tilde{\varvec{b}} = \varvec{r}_{n+1},\,\,\text {in}\,\varOmega \\ \varvec{N}^\mathsf{{\tiny T} }\varvec{\sigma }_{n+1} = \tilde{\varvec{t}},\,\,\text {on}\,\varGamma \end{array} \right. \end{aligned}$$
(29)
$$\begin{aligned}&{\displaystyle \frac{\delta J}{\delta \varvec{r}_{n+1}}} = -\Delta t^2 \tilde{\rho }{}^{-1}\varvec{r}_{n+1} + \Delta \varvec{u} = \varvec{0}\end{aligned}$$
(30)
$$\begin{aligned}&{\displaystyle \frac{\delta J}{\delta \varvec{\sigma }_{n+1}}} = \varvec{\nabla }\varvec{u} - \Delta \varvec{\lambda }\nabla _\sigma F(\varvec{\sigma }_{n+1}) = \varvec{0}\end{aligned}$$
(31)
$$\begin{aligned}&{\displaystyle \frac{\delta J}{\delta \Delta \varvec{\lambda }}} = F(\varvec{\sigma }_{n+1}) +\varvec{s} = \varvec{0}\end{aligned}$$
(32)
$$\begin{aligned}&{\displaystyle \frac{\delta J}{\delta s^I}} = {\displaystyle \frac{\beta }{s^I}} -\Delta \lambda ^I= 0 \,\Rightarrow \, s^I\Delta \lambda ^I=\beta ,\,\,I\,\in \,\mathcal {C} \end{aligned}$$
(33)

For \(\beta \rightarrow 0\), these equations are easily verified as being the governing equations for the problem at hand. Note that the flow rule in the above equations is associated, i.e. the flow potential is equal to the yield potential \(F\). This is a consequence of the variational formulation and is not possible to circumvent directly. In this paper we use the approach suggested in [37] of replacing the original yield function by an ‘effective’ one which, when used as a flow potential, yields the correct plastic strains. This approach was shown to produce reliable results for a range of static small deformation problems and in this paper we demonstrate that it is equally reliable for dynamic problems involving very large deformations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Krabbenhoft, K. & Sheng, D. Particle finite element analysis of the granular column collapse problem. Granular Matter 16, 609–619 (2014). https://doi.org/10.1007/s10035-014-0505-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0505-5

Keywords

Navigation