Skip to main content

Advertisement

Log in

Hydrological Regime and Plant Functional Traits Jointly Mediate the Influence of Salix spp. on Soil Organic Carbon Stocks in a High Arctic Tundra

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Evidence points out that increasing plant productivity associated with greater erect shrub abundance alters soil organic carbon (SOC) stocks in the Arctic. However, the underlying plant economic traits remain poorly examined, which limits our understanding of plant–environment interactions driving tundra carbon cycling. We explored how erect shrub abundance leads to SOC variation in a High Arctic tundra (Bylot Island, Nunavut, Canada), where the only erect shrub, Salix richardsonii, has settled along currently active and abandoned channel zones of alluvial fans. The effects of vegetation and local environmental changes on SOC were evaluated through a paired sampling of soil materials and plant aboveground functional traits associated with plant carbon supply and nutrient demand processes. The occurrence of S. richardsonii, characterized by a tenfold increase in aboveground biomass, induced a 28% increase in SOC compared to adjacent plots dominated by prostrate shrubs and graminoids. Yet, this vegetation effect was solely observed along active channels, where higher SOC was associated with greater leaf and stem biomass. A path analysis showed that shrub leaf area index and total leaf nutrient content best represented plant carbon supply and nutrient demand dynamics, respectively, and jointly regulated SOC variation. This study underscores that vegetation structural changes associated with increasing erect shrub abundance in the Arctic can promote soil organic carbon storage, but that this pattern may be mediated by strong plant–environment interactions. Accounting for changes in functional traits driving plant carbon supply and nitrogen demand proves important for a better mechanistic understanding of how shrubification impacts tundra carbon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300.

    Google Scholar 

  • Bisson A. 2016. Étude dendroécologique de l’arbuste érigée Salix richardsonii à sa limite nordique de distribution dans le Haut-Arctique. Trois-Rivières: Université du Québec à Trois-Rivières. p 11.

    Google Scholar 

  • Bjorkman AD, Myers-Smith IH, Elmendrof SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC, Forbes BC, et al. 2018. Plant functional trait change across a warming tundra biome. Nature 562:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Blair TC, McPherson JG. 2009. Processes and forms of alluvial fans. In: Parsons AJ, Abrahams AD, eds. Geomorphology of Desert Environments. Dordrecht: Springer. p 831.

  • Bret-Harte MS, Shaver GR, Zoerner JP, Johnstone JF, Wagner JL, Chavez AS, Gunkelman RF IV, Lippert SC, Laundre JA. 2001. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82:18–32.

    Article  Google Scholar 

  • Camino-Serrano M, Tifani M, Balesdent J, Hatté C, Peñuelas J, Cornu S, Guenet B. 2019. Including stable carbon isotopes to evaluate the dynamics of soil carbon in the land-surface model ORCHIDEE. J Adv Model Earth Syst 11:3650–3669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapin FS III, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Chen L, Fang K, Wei B, Qin S, Feng X, Hu T, Ji C, Yang Y. 2021. Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecol Lett 24:1018–1028.

    Article  PubMed  Google Scholar 

  • Clemmensen KE, Brandström Durling M, Michelsen A, Hallin S, Finlay RD, Lindahl BDA. 2021. Tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol Lett 24:1193–1204.

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Van Bodegom PM, Aerts R, Callaghan TV, Van Logtestijn RSP, Alatalo J, Chapin FS III, Gerdol R, Gudmundson J, Gwynn-Jones D, et al. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627.

    Article  PubMed  Google Scholar 

  • Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ. 2015. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat Geosci 8:776–779.

    Article  CAS  Google Scholar 

  • Coulombe S, Fortier D, Bouchard F, Paquette M, Charbonneau S, Lacelle D, Laurion I, Pienitz R. 2022. Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain. Cryosphere 16:1637–1657.

    Article  Google Scholar 

  • Craine JM, Brookshire ENJ, Cramer MD, Hasselquist NJ, Koba K, Marin-Spiotta E, Wang L. 2015. Ecological interpretation of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396:1–26.

    Article  CAS  Google Scholar 

  • Crann CA, Murseli S, St-Jean G, Zhao X, Clark ID, Kieser WE. 2017. First status report on radiocarbon sample preparation at the A.E. Lalonde AMS Laboratory (Ottawa, Canada). Radiocarbon 59:695–704.

    Article  CAS  Google Scholar 

  • Daubenmire R. 1959. A canopy-coverage method of vegetational analysis. Northwest Sci 33:43–64.

    Google Scholar 

  • DeMarco J, Mack MC, Bret-Harte MS. 2011. The effects of snow, soil, microenvironment, and soil organic matter quality on N availability in three Alaskan arctic plant communities. Ecosystems 14:804–817.

    Article  CAS  Google Scholar 

  • DeMarco J, Mack MC, Bret-Harte MS. 2014. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95:1861–1875.

    Article  PubMed  Google Scholar 

  • Deslippe JR, Hartmann M, Mohn WW, Simard SW. 2011. Long-term experimental manipulation of climate alters the ectomyccorhizal community of Betula nana in Arctic tundra. Glob Change Biol 17:1625–1636.

    Article  Google Scholar 

  • Dhillion SS. 1994. Ectomycorrhizae, arbuscular mycorrhizae, and Rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arctic Alpine Res 26:304–307.

    Article  Google Scholar 

  • Dijkstra FA. 2009. Modeling the flow of 15N after a 15N pulse to study long-term N dynamics in a semiarid grassland. Ecology 90:2171–2182.

    Article  PubMed  Google Scholar 

  • Dijkstra FA, Bader NE, Johnson DW, Cheng W. 2009. Does accelerated soil organic matter decomposition in the presence of plants increase plant N availability? Soil Biol Biochem 41:1080–1087.

    Article  CAS  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA. 2013. Rhizosphere priming: a nutrient perspective. Front Microbiol 4:216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehleringer J, Buchmann N, Flanagan LB. 2000. Carbon isotope ratios in belowground carbon cycle processes. Ecol Appl 10:412–422.

    Article  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, et al. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Change 2:453–457.

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland ES, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142.

    Article  PubMed  Google Scholar 

  • Epstein HE, Myers-Smith I, Walker DA. 2013. Recent dynamics of arctic and sub-arctic vegetation. Environ Res Lett 8:015040.

    Article  Google Scholar 

  • Fontaine S, Barot S. 2005. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087.

    Article  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A. 2004. Carbon input to soil may decrease soil carbon content. Ecology Letters 7:314–320.

    Article  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA. 2011. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem 43:86–96.

    Article  CAS  Google Scholar 

  • Fortier D, Allard M. 2004. Late Holocene syngenetic ice-wedge polygons development, Bylot Island, Canadian Arctic Archipelago. Can J Earth Sci 41:997–1012.

    Article  Google Scholar 

  • Fortier D, Allard M, Pivot F. 2006. A late-Holocene record of loess deposition in ice-wedge polygons reflecting wind activity and ground moisture conditions, Bylot Island, eastern Canadian Arctic. Holocene 16:635–646.

    Article  Google Scholar 

  • Gagnon M, Domine F, Boudreau S. 2019. The carbon sink due to shrub growth on Arctic tundra: a case study in a carbon-poor in eastern Canada. Environ Res Commun 1:091001.

    Article  Google Scholar 

  • Gauthier G, Bêty J, Cadieux M-C, Legagneux P, Doiron M, Chevallier C, Lai S, Tarroux A, Berteaux D. 2013. Long-term monitoring at multiple trophic levels suggest heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos Trans R Soc B 368:20120842.

    Article  Google Scholar 

  • Gavazov K, Canarini A, Jassey VEJ, Mills R, Richter A, Sundqvist MK, Väisänen M, Walker TWN, Wardle DA, Dorrepaal E. 2022. Plant-microbial linkages underpin carbon sequestration in contrasting mountain tundra vegetation types. Soil Biol Biochem 165:108530.

    Article  CAS  Google Scholar 

  • Givnish TJ, Wong SC, Stuart-Williams H, Holloway-Phillips M, Farquhar GD. 2014. Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia. Ecology 95:2991–3007.

    Article  Google Scholar 

  • Happonen K, Virkkala A-M, Kemppinen J, Niittynen P, Luoto M. 2022. Relationships between above-ground plant traits and carbon cycling in tundra plant communities. J Ecol 110:700–716.

    Article  CAS  Google Scholar 

  • Hartley IP, Garnett MH, Sommerkorn M, Hopkins DW, Fletcher BJ, Sloan VL, Phoenix GK, Wookey PA. 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat Clim Change 2:875–879.

    Article  CAS  Google Scholar 

  • Henneron L, Cros C, Picon-Cochard C, Rahimian V, Fontaine S. 2020a. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J Ecol 108:528–545.

    Article  CAS  Google Scholar 

  • Henneron L, Kardol P, Wardle D, Cros C, Fontaine S. 2020b. Rhizospere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytol 228:1269–1282.

    Article  CAS  PubMed  Google Scholar 

  • Hobbie JE, Hobbie EA. 2009. 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology 87:816–822.

    Article  Google Scholar 

  • Hudson JMG, Henry GHR, Cornwell WK. 2011. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Glob Change Biol 17:1013–1021

    Article  Google Scholar 

  • Huo C, Luo Y, Cheng W. 2017. Rhizosphere priming effect: a meta-analysis. Soil Biol Biochem 111:78–84.

    Article  CAS  Google Scholar 

  • Hewitt RE, Taylor DL, Genet H, McGuire AD, Mack MC. 2019. Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. J Ecol 107:950–962.

    Article  CAS  Google Scholar 

  • Kallenbach CM, Frey SD, Grandy AS. 2016. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:13630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemppinen J, Niittynen P, Virkkala A-M, Happonen K, Riihimäki H, Aalto J, Luoto M. 2021. Dwarf shrubs impact tundra soils: drier, colder, and less organic carbon. Ecosystems 24:1378–1392.

    Article  CAS  Google Scholar 

  • Keuper F, Wild B, Kummu M, Beer C, Blume-Werry G, Fontaine S, Gavazov K, Gentsch N, Guggenberger G, Hugelius G, et al. 2020. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat Geosci 13:560–565.

    Article  CAS  Google Scholar 

  • Kou D, Yang G, Li F, Feng X, Zhang D, Mao C, Zhang Q, Peng Y, Ji C, Zhu Q, et al. 2022. Progressive nitrogen limitation across the Tibetan alpine permafrost region. Nat Commun 11:3331.

    Article  Google Scholar 

  • Lavallee JM, Soong JL, Cotrufo MF. 2020. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob Change Biol 26:261–273.

    Article  Google Scholar 

  • Lefcheck JS. 2016. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579.

    Article  Google Scholar 

  • Liang J, Zhou Z, Huo C, Shi Z, Cole JR, Huang L, Konstantinidis KT, Li X, Liu B, Luo Z, et al. 2018. More replenishment than priming loss of soil organic carbon with additional carbon input. Nat Commun 9:3175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loya WM, Johnson LC, Kling GW, King JY, Reeburgh WS, Nadelhoffer KJ. 2002. Pulse-labeling studies of carbon cycling in arctic tundra ecosystems: contribution of photosynthates to soil organic matter. Glob Biogeochem Cycles 16:1–8.

    Article  Google Scholar 

  • Lynch LM, Machmuller MB, Cotrufo MF, Paul EA, Wallestein MD. 2018. Tracking the fate of fresh carbon in the Arctic tundra: will shrub expansion alter responses of soil organic matter to warming? Soil Biol Biochem 120:134–144.

    Article  CAS  Google Scholar 

  • Maire V, Gross N, Hill D, Martin R, Wirth C, Wright IJ, Soussana F. 2013. Disentangling coordination among functional traits using an individual-centered model: impact on plant performance at intra- and inter-specific levels. PLoS One 8:e77372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maire V, Gross N, da Silveira Pontes L, Picon-Cochard C, Soussana J-F. 2009. Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Funct Ecol 23:668–679.

    Article  Google Scholar 

  • Martel YA, Paul EA. 1974. Effects of cultivation of the organic matter of grassland soils as determined by fractionation and radiocarbon dating. Can J Soil Sci 54:419–426.

    Article  CAS  Google Scholar 

  • Mekonnen ZA, Riley WJ, Grant RF. 2018. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP85 climate trajectory. Environ Res Lett 13:54029.

    Article  Google Scholar 

  • Metcalfe DB, Hermans TDG, Ahlstrand J, Becker M, Berggren M, Björk RG, Björkman MP, Blok D, Chaudhary N, Chisholm C, et al. 2018. Patchy field sampling biases understanding of climate change impacts across the arctic. Nat Ecol Evol 2:1443–1448.

    Article  PubMed  Google Scholar 

  • Miall ÀD, Balkwill HR, Hopkins WS Jr. 1980. Cretaceous and tertiary sediments of eclipse trough, Bylot Island area, Arctic Canada, and their regional setting. Geol Surv Canada 79–23:20p.

    Google Scholar 

  • Myers-Smith IH, Hik DS. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: an experimental test of tundra snow-shrub interactions. Ecol Evol 3:3683–3700.

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–891.

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, et al. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509.

    Article  Google Scholar 

  • Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers-Blondin S, Beck PSA, et al. 2020. Complexity revealed in the greening of the Arctic. Nat Clim Change 10:106–117.

    Article  Google Scholar 

  • Ola A, Fortier D, Coulombe S, Comte J, Domine F. 2022. The distribution of soil carbon and nitrogen stocks among dominant geomorphological terrain units in Qarlikturvik Valley, Bylot Island, Arctic Canada. J Geophys Res Biogeosci 127:006750.

    Article  Google Scholar 

  • Parker TC, Clemmensen KE, Friggens NL, Hartley IP, Johnson D, Lindahl BD, Olofsson J, Siewert MB, Street LE, Subke J-A, Wookey PA. 2020. Rhizosphere allocation by canopy-forming species dominates soil CO2 efflux in a subarctic landscape. New Phytol 227:1818–1830.

    Article  CAS  PubMed  Google Scholar 

  • Parker TC, Subke JA, Wookey PA. 2015. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob Change Biol 21:2070–2081.

    Article  Google Scholar 

  • Parker TC, Thurston AM, Raundrup K, Subke J-A, Wookey PA, Hartley IP. 2021. Shrub expansion in the Arctic may induce large-scale carbon losses due to changes in plant-soil interactions. Plant Soil 463:643–651.

    Article  CAS  Google Scholar 

  • Perreault N, Lévesque E, Fortier D, Lamarque LJ. 2016. Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation. Biogeosciences 13:1237–1253.

    Article  Google Scholar 

  • Perveen N, Barot S, Alvarez G, Klumpp K, Martin R, Rapaport A, Herfurth D, Louault F, Fontaine S. 2014. Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model. Glob Change Biol 20:1174–1190.

    Article  Google Scholar 

  • Pike N. 2011. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol Evol 2:278–282.

    Article  Google Scholar 

  • Prater I, Zubrzycki S, Buegger F, Zoor-Füllgraff LC, Angst G, Dannenmann M, Mueller CW. 2020. From fibrous plant residues to mineral-associated organic carbon—the fate of organic matter in Arctic permafrost soils. Biogeosciences 17:3367–3383.

    Article  CAS  Google Scholar 

  • Qian H, Joseph R, Zeng N. 2010. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections. Glob Change Biol 16:641–656.

    Article  Google Scholar 

  • R Development Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org

  • Rioux K. 2021. Impacts de la dégradation du pergélisol par thermo-érosion sur les processus hydrologiques et les flux de matières. MSc thesis. Montréal: Université de Montréal. 98p.

  • Rousk K, Sorensen PL, Michelsen A. 2017. Nitrogen fixation in the high Arctic: a source of ‘new’ nitrogen? Biogeochemistry 136:213–222.

    Article  CAS  Google Scholar 

  • Shaver GR, Rastetter EB, Salman V, Street LE, van de Weg MJ, Rocha A, van Wijk MT, Williams M. 2013. Pan-Arctic modelling of net ecosystem exchange of CO2. Philos Trans R Soc B 368:20120485.

    Article  CAS  Google Scholar 

  • Shaver GR, Street LE, Rastetter EB, Van Wijk MT, Williams M. 2007. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden. J Ecol 95:802–817.

    Article  Google Scholar 

  • Sistla SA, Asao S, Schimel JP. 2012. Detecting microbial N-limitation in tussock tundra: implications for Arctic soil organic carbon cycling. Soil Biol Biochem 55:78–84.

    Article  CAS  Google Scholar 

  • Sørensen MV, Strimbeck R, Nystuen KO, Kapas RE, Enquist BJ, Graae BJ. 2018. Draining the pool? Carbon storage and fluxes in three alpine plant communities. Ecosystems 21:316–330.

    Article  Google Scholar 

  • Spitzer CM, Wardle DA, Lindhal BD, Sundqvist MK, Gundale MJ, Fanin N, Kardol P. 2022. Root traits and soil micro-organisms as drivers of plant-soil feedbacks within the sub-arctic tundra meadow. J Ecol 110:466–478.

    Article  CAS  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L. 2011. Functional traits determine trade-offs and niches in a tropical forest community. Proc Natl Acad Sci USA 108:20627–20632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Street LE, Garnett MH, Subke J-A, Baxter R, Dean JF, Wookey PA. 2020. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Glob Change Biol 26:4559–4571.

    Article  Google Scholar 

  • Street LE, Shaver GR, Williams M, Van Wijk MT. 2007. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems? J Ecol 95:139–150.

    Article  Google Scholar 

  • Street LE, Subke J-A, Baxter R, Dinsmore KJ, Knoblauch C, Wookey PA. 2018. Ecosystem carbon dynamics differ between tundra shrub types in the western Canadian Arctic. Environ Res Lett 13:084014.

    Article  Google Scholar 

  • ter Braak CJF, Verdonschot PFM. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289.

    Article  Google Scholar 

  • Terrer C, Phillips RP, Hungate BA, Rosende J, Pett-Ridge J, Craig ME, van Groenigen KJ, Keenan TF, Sulman BN, Stocker BD, et al. 2021. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591:599–603.

    Article  CAS  PubMed  Google Scholar 

  • van Groenigen KJ, Qi X, Osenberg CW, Luo Y, Hungate BA. 2014. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–509.

    Article  PubMed  Google Scholar 

  • Wallenstein MD, McMahon S, Schimel S. 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol Ecol 59:428–435.

    Article  CAS  PubMed  Google Scholar 

  • Wilmking M, Harden J, Tape K. 2006. Effect of tree line advance on carbon storage in NW Alaska. J Geophys Res Biogeosci 111:G02023.

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Flexas J, et al. 2004. The worldwide leaf economics spectrum. Nature 428:821–827.

    Article  CAS  PubMed  Google Scholar 

  • Zhen Z-L. 2009. Carbon and nitrogen nutrient balance signaling in plants. Plant Signal Behav 4:584–591.

    Article  Google Scholar 

  • Zhu Q, Iversen CM, Riley WJ, Slette IJ, Vander Stel HM. 2016. Root traits explain observed tundra vegetation nitrogen uptake patterns: implications for trait-based land models. J Geophys Res Biogeosci 121:3101–3112.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Inuit community of Pond Inlet and to Parks Canada-Sirmilik National Park, and grateful to Ariane Bisson for her fieldwork support and to Annie Picard, Joannie Vertefeuille and Hugo Tremblay for their help with soil core processing and preliminary data analyses. This study was supported by the Fonds de Recherche du Québec—Nature et technologies (FRQNT-2018-PR-208107), the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Frontiers Grant ‘Arctic Development and Adaptation to Permafrost in Transition’ (ADAPT), the Network of Centers of Excellence of Canada ArcticNet, the Northern Scientific Training Program (Indian and Northern Affairs Canada), the Laval University and the University of Québec at Trois-Rivières. L.J.L. and M.T. were supported by EnviroNorth Interdisciplinary research fellowships (2014–2015) and the UQTR Research Chair in Functional Arctic Ecology (2019–2022). V.M., E.L. and F.G. were supported by NSERC Discovery Grants. Logistical support for field work and access to the Bylot Island field camp during summers 2015–2018 were provided by the Centre d'études nordiques (CEN) and Polar Continental Shelf Program (Natural Resources Canada).

Funding

Fonds Québécois de la Recherche sur la Nature et les Technologies, FRQNT-2018-PR-208107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent J. Lamarque.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1041 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamarque, L.J., Félix-Faure, J., Deschamps, L. et al. Hydrological Regime and Plant Functional Traits Jointly Mediate the Influence of Salix spp. on Soil Organic Carbon Stocks in a High Arctic Tundra. Ecosystems 26, 1238–1259 (2023). https://doi.org/10.1007/s10021-023-00829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00829-1

Keywords

Navigation