Skip to main content

Advertisement

Log in

Fine Wood Decomposition Rates Decline with the Age of Tropical Successional Forests in Southern Mexico: Implications to Ecosystem Carbon Storage

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Wood decomposition in tropical forests is strongly linked to the terrestrial carbon cycle. Our understanding of the successional changes in wood decomposition in diverse tropical forests is still limited. In this study, we tested the hypothesis that fine wood decomposition rates decline with the increasing age of successional forests due to the interspecific variation in wood density and changes in species composition. We studied fine wood decomposition in a chronosequence of tropical forests representing four successional phases in southern Mexico. Wood segments (1–7.5 cm diameter) from 30 dominant species (wood density range 0.34–0.83 g cm−3) were left on the ground for decomposition, and samples were recollected at different time intervals for three years. We used a modified negative exponential model by introducing the power parameter (p) that allowed for a time-dependent decomposition rate (k). Average k within a successional phase ranged from 0.22 to 0.39 yr−1 and declined gradually with the increase in forest age. We found a significant negative correlation between wood density and decomposition rate constants. The kspecies ranged from 0.07 to 1.11 yr−1, whereas p-parameters varied between 0.65 and 1.42. Trees such as Bursera simaruba, and Cascabela gaumeri decomposed faster, while Eugenia ibarrae, and Pouteria reticulata decomposed slower. Average fine woody debris inputs ranged from 1.2 to 3.7 Mg ha−1 yr−1 which increased with forest age. Increasing production and declining decomposition rates during succession contribute to the higher accumulation of deadwood in primary forests. The results on generalized, age- and species-specific wood decay parameters have important implications in simulating carbon dynamics of the changing tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L. 2019. Amazonian rainforest tree mortality driven by climate and functional traits. Nat Clim Change 9:384–388.

    Article  Google Scholar 

  • Aryal DR, De Jong BH, Ochoa-Gaona S, Esparza-Olguin L, Mendoza-Vega J. 2014. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric Ecosyst Environ 195:220–230.

    Article  Google Scholar 

  • Aryal DR, De Jong BH, Ochoa-Gaona S, Mendoza-Vega J, Esparza-Olguin L. 2015. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr Cycl Agroecosystems 103:45–60.

    Article  CAS  Google Scholar 

  • Aryal DR, De Jong BHJ, Mendoza-Vega J, Ochoa-Gaona S, Esparza-Olguín L. 2017. Soil Organic Carbon Stocks and Soil Respiration in Tropical Secondary Forests in Southern Mexico. Global Soil Security, . Springer: Switzerland. pp 153–165.

    Chapter  Google Scholar 

  • Baccini A, Walker W, Carvalho L, Farina M, Sulla-Menashe D, Houghton R. 2017. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358:230–234.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa JM, Broadbent EN, Bitencourt MD (2014) Remote sensing of aboveground biomass in tropical secondary forests: a review. Int J For Res

  • Bastin J, Rutishauser E, Kellner JR, Saatchi S, Pélissier R, Hérault B, Slik F, Bogaert J, De Cannière C, Marshall AR. 2018. Pan-tropical prediction of forest structure from the largest trees. Glob Ecol Biogeogr 27:1366–1383.

    Article  Google Scholar 

  • Bautista F, Palacio-Aponte G, Quintana P, Zinck JA. 2011. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Driv Forces Glob Pedodiversity 135:308–321.

    Google Scholar 

  • Błońska E, Lasota J, Piaszczyk W. 2019a. Dissolved carbon and nitrogen release from deadwood of different tree species in various stages of decomposition. Soil Sci Plant Nutr 65:100–107.

    Article  CAS  Google Scholar 

  • Błońska E, Lasota J, Tullus A, Lutter R, Ostonen I. 2019b. Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Ann for Sci 76:102.

    Article  Google Scholar 

  • Bond-Lamberty B, Gower ST. 2008. Decomposition and fragmentation of coarse woody debris: re-visiting a boreal black spruce chronosequence. Ecosystems 11:831–840.

    Article  Google Scholar 

  • Bradford MA, Warren RJ II, Baldrian P, Crowther TW, Maynard DS, Oldfield EE, Wieder WR, Wood SA, King JR. 2014. Climate fails to predict wood decomposition at regional scales. Nat Clim Change 4:625–630.

    Article  CAS  Google Scholar 

  • Buzzard V, Hulshof CM, Birt T, Violle C, Enquist BJ. 2016. Re-growing a tropical dry forest: functional plant trait composition and community assembly during succession. Funct Ecol 30:1006–1013.

    Article  Google Scholar 

  • Cairns MA, Olmsted I, Granados J, Argaez J. 2003. Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186:125–132.

    Article  Google Scholar 

  • Calderón-Cortés N, Escalera-Vázquez LH, Oyama K. 2018. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico. PeerJ 6:e4731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM. 2000. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122:380–388.

    Article  CAS  PubMed  Google Scholar 

  • Chambers JQ, Schimel JP, Nobre AD. 2001. Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52:115–131.

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99.

    Article  CAS  PubMed  Google Scholar 

  • Chazdon RL. 2014. Second growth: The promise of tropical forest regeneration in an age of deforestation. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Chazdon RL, Broadbent EN, Rozendaal DM, Bongers F, Zambrano AMA, Aide TM, Balvanera P, Becknell JM, Boukili V, Brancalion PH. 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv 2:1501639.

    Article  CAS  Google Scholar 

  • Cheesman AW, Cernusak LA, Zanne AE. 2018. Relative roles of termites and saprotrophic microbes as drivers of wood decay: a wood block test. Austral Ecol 43:257–267.

    Article  Google Scholar 

  • Chen HY, Brant AN, Seedre M, Brassard BW, Taylor AR. 2017. The contribution of litterfall to net primary production during secondary succession in the boreal forest. Ecosystems 20:830–844.

    Article  CAS  Google Scholar 

  • Chen Y, Sayer EJ, Li Z, Mo Q, Li Y, Ding Y, Wang J, Lu X, Tang J, Wang F (2015) Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Funct Ecol

  • Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers of tree mortality under drought. Nature 558:531–539.

    Article  CAS  PubMed  Google Scholar 

  • Clark DB, Clark DA, Brown S, Oberbauer SF, Veldkamp E. 2002. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. For Ecol Manag 164:237–248.

    Article  Google Scholar 

  • Delaney M, Brown S, Lugo AE, Torres-Lezama A, Quintero NB. 1998. The quantity and turnover of dead wood in permanent forest plots in six life zones of venezuela1. Biotropica 30:2–11.

    Article  Google Scholar 

  • Dossa GG, Schaefer D, Zhang J, Tao J, Cao K, Corlett RT, Cunningham AB, Xu J, Cornelissen JH, Harrison RD. 2018. The cover uncovered: Bark control over wood decomposition. J Ecol 106:2147–2160.

    Article  Google Scholar 

  • Eaton JM, Lawrence D. 2006. Woody debris stocks and fluxes during succession in a dry tropical forest. For Ecol Manag 232:46–55.

    Article  Google Scholar 

  • Feldpausch TR, da Prates-Clark C, Fernandes EC, Riha SJ. 2007. Secondary forest growth deviation from chronosequence predictions in central Amazonia. Glob Change Biol 13:967–979.

    Article  Google Scholar 

  • Fonte SJ, Schowalter TD. 2004. Decomposition of Greenfall vs. Senescent Foliage in a Tropical Forest Ecosystem in Puerto Rico 1. Biotropica 36:474–482.

    Article  Google Scholar 

  • Fraver S, Milo AM, Bradford JB, D’Amato AW, Kenefic L, Palik BJ, Woodall CW, Brissette J. 2013. Woody debris volume depletion through decay: implications for biomass and carbon accounting. Ecosystems 16:1262–1272.

    Article  CAS  Google Scholar 

  • Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JH. 2012. Interspecific differences in wood decay rates: insights from a new short-term method to study long-term wood decomposition. J Ecol 100:161–170.

    Article  Google Scholar 

  • García GG, March IJ (1990) Elaboración de la Cartografía Temática Básica y Base Geográfica de Datos para la Zona de Calakmul, Campeche

  • García Gil G, Palacio Prieto JL, Ortiz Pérez MA (2002) Reconocimiento geomorfológico e hidrográfico de la Reserva de la Biosfera Calakmul, México. Investig Geográficas, pp 7–23

  • Giardina CP. 2019. Advancing our understanding of woody debris in tropical forests. Ecosystems 22:1173–1175.

    Article  Google Scholar 

  • Goldstein A, Turner WR, Spawn SA, Anderson-Teixeira KJ, Cook-Patton S, Fargione J, Gibbs HK, Griscom B, Hewson JH, Howard JF (2020) Protecting irrecoverable carbon in Earth’s ecosystems. Nat Clim Change, pp 1–9

  • Gora EM, Kneale RC, Larjavaara M, Muller-Landau HC. 2019a. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22:1189–1205.

    Article  CAS  Google Scholar 

  • Gora EM, Lucas JM, Yanoviak SP. 2019b. Microbial composition and wood decomposition rates vary with microclimate from the ground to the canopy in a tropical forest. Ecosystems 22:1206–1219.

    Article  CAS  Google Scholar 

  • Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. 2019. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol 9:12113–12127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths HM, Ashton LA, Evans TA, Parr CL, Eggleton P. 2019. Termites can decompose more than half of deadwood in tropical rainforest. Curr Biol 29:R118–R119.

    Article  CAS  PubMed  Google Scholar 

  • Guariguata MR, Ostertag R. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manag 148:185–206.

    Article  Google Scholar 

  • Haas-Ek MA, González-Valdivia NA, Jong BHJD, Ochoa-Gaona S, Aryal DR. 2019. Arboreal resprouting in the Calakmul, Campeche, Mexico tropical forest regeneration. Rev Biol Trop 67:164–181.

    Google Scholar 

  • Hararuk O, Kurz WA, Didion M. 2020. Dynamics of dead wood decay in Swiss forests. For Ecosyst 7:1–16.

    Article  Google Scholar 

  • Harmon ME, Fasth B, Woodall CW, Sexton J. 2013. Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type. For Ecol Manag 291:259–267.

    Article  Google Scholar 

  • Harmon ME, Fasth BG, Yatskov M, Kastendick D, Rock J, Woodall CW. 2020. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag 15:1–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmon ME, Krankina ON, Sexton J. 2000. Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J for Res 30:76–84.

    Article  Google Scholar 

  • Harmon ME, Sexton J. 1996. Guidelines for measurements of woody detritus in forest ecosystems. US LTER Network Office Seattle (WA)

  • Harmon ME, Whigham DF, Sexton J, Olmsted I. 1995. Decomposition and mass of woody detritus in the dry tropical forests of the northeastern Yucatan Peninsula, Mexico. Biotropica, pp 305–16

  • Harmon ME, Woodall CW, Fasth B, Sexton J (2008) Woody detritus density and density reduction factors for tree species in the United States: a synthesis

  • Hérault B, Beauchêne J, Muller F, Wagner F, Baraloto C, Blanc L, Martin J-M. 2010. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164:243–251.

    Article  PubMed  Google Scholar 

  • Houghton RA, Nassikas AA. 2017. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob Biogeochem Cycles 31:456–472.

    Article  CAS  Google Scholar 

  • Hu Z, Michaletz ST, Johnson DJ, McDowell NG, Huang Z, Zhou X, Xu C. 2018. Traits drive global wood decomposition rates more than climate. Glob Change Biol 24:5259–5269.

    Article  Google Scholar 

  • Hu Z, Xu C, McDowell NG, Johnson DJ, Wang M, Luo Y, Zhou X, Huang Z. 2017. Linking microbial community composition to C loss rates during wood decomposition. Soil Biol Biochem 104:108–116.

    Article  CAS  Google Scholar 

  • Hughes RF, Kauffman JB, Jaramillo VJ. 2000. Ecosystem-scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecol Appl 10:515–527.

    Article  Google Scholar 

  • Janisch JE, Harmon ME, Chen H, Fasth B, Sexton J. 2005. Decomposition of coarse woody debris originating by clearcutting of an old-growth conifer forest. Ecoscience 12:151–160.

    Article  Google Scholar 

  • Joly F, Milcu A, Scherer-Lorenzen M, Jean L, Bussotti F, Dawud SM, Müller S, Pollastrini M, Raulund-Rasmussen K, Vesterdal L. 2017. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol 214:1281–1293.

    Article  CAS  PubMed  Google Scholar 

  • Jones IL, DeWalt SJ, Lopez OR, Bunnefeld L, Pattison Z, Dent DH. 2019. Above-and belowground carbon stocks are decoupled in secondary tropical forests and are positively related to forest age and soil nutrients respectively. Sci Total Environ 697:133987.

    Article  CAS  PubMed  Google Scholar 

  • Kahl T, Arnstadt T, Baber K, Bässler C, Bauhus J, Borken W, Buscot F, Floren A, Heibl C, Hessenmöller D. 2017. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For Ecol Manag 391:86–95.

    Article  Google Scholar 

  • Kahl T, Baber K, Otto P, Wirth C, Bauhus J. 2015. Drivers of CO2 emission rates from dead wood logs of 13 tree species in the initial decomposition phase. Forests 6:2484–2504.

    Article  Google Scholar 

  • Kelly J, Beauchamp J. 1987. Mass loss and nutrient changes in decomposing upland oak and mesic mixed-hardwood leaf litter. Soil Sci Soc Am J 51:1616–1622.

    Article  Google Scholar 

  • Lajtha K. 2020. Nutrient retention and loss during ecosystem succession: revisiting a classic model. Ecology 101:e02896.

    Article  PubMed  Google Scholar 

  • Law S, Eggleton P, Griffiths H, Ashton L, Parr C. 2019. Suspended dead wood decomposes slowly in the tropics, with microbial decay greater than termite decay. Ecosystems 22:1176–1188.

    Article  Google Scholar 

  • Lindenmayer DB, Laurance WF. 2017. The ecology, distribution, conservation and management of large old trees. Biol Rev 92:1434–1458.

    Article  PubMed  Google Scholar 

  • Liu G, Cornwell WK, Cao K, Hu Y, Van Logtestijn RS, Yang S, Xie X, Zhang Y, Ye D, Pan X. 2015. Termites amplify the effects of wood traits on decomposition rates among multiple bamboo and dicot woody species. J Ecol 103:1214–1223.

    Article  Google Scholar 

  • Lustenhouwer N, Maynard DS, Bradford MA, Lindner DL, Oberle B, Zanne AE, Crowther TW. 2020. A trait-based understanding of wood decomposition by fungi. Proc Natl Acad Sci 117:11551–11558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson-Teixeira KJ, Andrade A, Baltzer J, Becker KM. 2018. Global importance of large-diameter trees. Glob Ecol Biogeogr 27:849–864.

    Article  Google Scholar 

  • Maass JM, Martínez-Yrízar A, Patiño C, Sarukhán J (2002) Distribution and annual net accumulation of above-ground dead phytomass and its influence on throughfall quality in a Mexican tropical deciduous forest ecosystem. J Trop Ecol, pp 821–34

  • Marin-Spiotta E, Silver W, Ostertag R. 2007. Long-term patterns in tropical reforestation: Plant community composition and aboveground biomass accumulation. Ecol Appl 17:828–839.

    Article  CAS  PubMed  Google Scholar 

  • Marklein AR, Winbourne JB, Enders SK, Gonzalez DJ, van Huysen TL, Izquierdo JE, Light DR, Liptzin D, Miller KE, Morford SL. 2016. Mineralization ratios of nitrogen and phosphorus from decomposing litter in temperate versus tropical forests. Glob Ecol Biogeogr 25:335–346.

    Article  Google Scholar 

  • Martin PA, Newton AC, Bullock JM. 2013. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc R Soc B Biol Sci 280:20132236.

    Article  Google Scholar 

  • Martínez E, Galindo-Leal C. 2002. La vegetación de Calakmul, Campeche, México: clasificación, descripción y distribución. Bol Soc Botánica México 71:7–32.

    Google Scholar 

  • McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A (2020) Pervasive shifts in forest dynamics in a changing world. Science, p 368

  • Mendoza-Vega J, Messing I, Ku-Quej VM, Pool-Novelo L, Chi-Quej J. 2021. Land evaluation and carbon flux estimation to reinforce natural protected areas: a case study in Southern Mexico. Environ Earth Sci 80:1–17.

    Article  CAS  Google Scholar 

  • Minnich C, Peršoh D, Poll C, Borken W. 2020. Changes in chemical and microbial soil parameters following 8 years of deadwood decay: an experiment with logs of 13 tree species in 30 forests. Ecosystems. https://doi.org/10.1007/s10021-020-00562-z.

    Article  Google Scholar 

  • Mora F, Jaramillo VJ, Bhaskar R, Gavito M, Siddique I, Byrnes JEK, Balvanera P. 2017. Carbon accumulation in neotropical dry secondary forests: the roles of forest age and tree dominance and diversity. Ecosystems. https://doi.org/10.1007/s10021-017-0168-2.

    Article  Google Scholar 

  • Morales Ruiz DE, Aryal DR, Pinto Ruiz R, Guevara Hernández F, Casanova Lugo F, Villanueva López G. 2021. Carbon contents and fine root production in tropical silvopastoral systems. Land Degrad Dev 32:738–756.

    Article  Google Scholar 

  • Mori S, Itoh A, Nanami S, Tan S, Chong L, Yamakura T. 2014. Effect of wood density and water permeability on wood decomposition rates of 32 Bornean rainforest trees. J Plant Ecol 7:356–363.

    Article  Google Scholar 

  • Mukhin VA, Voronin PY. 2007. Mycogenic decomposition of wood and carbon emission in forest ecosystems. Russ J Ecol 38:22–26.

    Article  Google Scholar 

  • Mukul SA, Herbohn J, Firn J (2020) Rapid recovery of tropical forest diversity and structure after shifting cultivation in the Philippines uplands. Ecol Evol

  • Müller-Using S, Bartsch N. 2009. Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. Eur J for Res 128:287–296.

    Article  Google Scholar 

  • Oberle B, Lee MR, Myers JA, Osazuwa-Peters OL, Spasojevic MJ, Walton ML, Young DF, Zanne AE. 2020. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Glob Change Biol 26:864–875.

    Article  Google Scholar 

  • Olson JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331.

    Article  Google Scholar 

  • Ordway EM, Asner GP. 2020. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc Natl Acad Sci 117:7863–7870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paillet Y, Archaux F, Boulanger V, Debaive N, Fuhr M, Gilg O, Gosselin F, Guilbert E. 2017. Snags and large trees drive higher tree microhabitat densities in strict forest reserves. For Ecol Manag 389:176–186.

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333:988–993.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer M, Lefebvre V, Turner E, Cusack J, Khoo M, Chey VK, Peni M, Ewers RM. 2015. Deadwood biomass: an underestimated carbon stock in degraded tropical forests? Environ Res Lett 10:044019.

    Article  CAS  Google Scholar 

  • Piaszczyk W, Błońska E, Lasota J, Lukac M. 2019. A comparison of C: N: P stoichiometry in soil and deadwood at an advanced decomposition stage. Catena 179:1–5.

    Article  CAS  Google Scholar 

  • Pietsch KA, Eichenberg D, Nadrowski K, Bauhus J, Buscot F, Purahong W, Wipfler B, Wubet T, Yu M, Wirth C. 2019. Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos 128:701–715.

    Article  Google Scholar 

  • Poorter L, Bongers F, Aide TM, Zambrano AMA, Balvanera P, Becknell JM, Boukili V, Brancalion PH, Broadbent EN, Chazdon RL. 2016. Biomass resilience of Neotropical secondary forests. Nature 530:211–214.

    Article  CAS  PubMed  Google Scholar 

  • Poorter L, Rozendaal DM, Bongers F, de Almeida-Cortez JS, Zambrano AMA, Álvarez FS, Andrade JL, Villa LFA, Balvanera P, Becknell JM. 2019. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat Ecol Evol 3:928–934.

    Article  PubMed  Google Scholar 

  • Powers JS, Marín-Spiotta E. 2017. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annu Rev Ecol Evol Syst 48:497–519.

    Article  Google Scholar 

  • Rinne-Garmston KT, Peltoniemi K, Chen J, Peltoniemi M, Fritze H, Mäkipää R. 2019. Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Glob Change Biol 25:1852–1867.

    Article  Google Scholar 

  • Rozendaal DM, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N, Balvanera P, Becknell JM, Bentos TV, Brancalion PH, Cabral GA. 2019. Biodiversity recovery of Neotropical secondary forests. Sci Adv 5:eaau3114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozendaal DM, Chazdon RL, Arreola-Villa F, Balvanera P, Bentos TV, Dupuy JM, Hernández-Stefanoni JL, Jakovac CC, Lebrija-Trejos EE, Lohbeck M. 2017. Demographic drivers of aboveground biomass dynamics during secondary succession in neotropical dry and wet forests. Ecosystems 20:340–353.

    Article  Google Scholar 

  • Rüger N, Condit R, Dent DH, DeWalt SJ, Hubbell SP, Lichstein JW, Lopez OR, Wirth C, Farrior CE. 2020. Demographic trade-offs predict tropical forest dynamics. Science 368:165–168.

    Article  CAS  PubMed  Google Scholar 

  • Russell MB, Fraver S, Aakala T, Gove JH, Woodall CW, D’Amato AW, Ducey MJ. 2015. Quantifying carbon stores and decomposition in dead wood: a review. For Ecol Manag 350:107–128.

    Article  Google Scholar 

  • Sánchez-Silva S, De Jong BH, Aryal DR, Huerta-Lwanga E, Mendoza-Vega J. 2018. Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. J Trop Ecol 34:364–377.

    Article  Google Scholar 

  • Schilling EM, Waring BG, Schilling JS, Powers JS. 2016. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest. Oecologia 182:287–297.

    Article  PubMed  Google Scholar 

  • Skelton J, Jusino MA, Carlson PS, Smith K, Banik MT, Lindner DL, Palmer JM, Hulcr J. 2019. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Mol Ecol 28:4971–4986.

    Article  CAS  PubMed  Google Scholar 

  • de Toledo JJ, Magnusson WE, de Castilho CV. 2009. Influence of soil, topography and substrates on differences in wood decomposition between one-hectare plots in lowland tropical moist forest in Central Amazonia. J Trop Ecol 25:649–656.

    Article  Google Scholar 

  • Torres JA, González G. 2005. Wood decomposition of cyrilla racemiflora (Cyrillaceae) in puerto rican dry and wet forests: A 13-year case study 1. Biotropica J Biol Conserv 37:452–456.

    Google Scholar 

  • Turner MG, Calder WJ, Cumming GS, Hughes TP, Jentsch A, LaDeau SL, Lenton TM, Shuman BN, Turetsky MR, Ratajczak Z. 2020. Climate change, ecosystems and abrupt change: science priorities. Philos Trans R Soc B 375:20190105.

    Article  Google Scholar 

  • Turner MG, Gardner RH (2015) Ecosystem processes in heterogeneous landscapes. In: Landscape ecology in theory and practice. Springer. pp 287–332

  • Ulyshen MD. 2016. Wood decomposition as influenced by invertebrates. Biol Rev 91:70–85.

    Article  PubMed  Google Scholar 

  • Ulyshen MD, Müller J, Seibold S. 2016. Bark coverage and insects influence wood decomposition: direct and indirect effects. Appl Soil Ecol 105:25–30.

    Article  Google Scholar 

  • Van Geffen KG, Poorter L, Sass-Klaassen U, Van Logtestijn RS, Cornelissen JH. 2010. The trait contribution to wood decomposition rates of 15 neotropical tree species. Ecology 91:3686–3697.

    Article  PubMed  Google Scholar 

  • Velez-Ruiz AM, Nevescanin-Moreno L, Vargas-Terminel ML, Flores-Espinoza AR, Álvarez-Yépiz JC, Yépez EA (2020) Data on litterfall production and meteorology at an old-growth tropical dry forest in northwestern Mexico. Data Brief, p 105723

  • Venugopal P, Junninen K, Linnakoski R, Edman M, Kouki J. 2016. Climate and wood quality have decayer-specific effects on fungal wood decomposition. For Ecol Manag 360:341–351.

    Article  Google Scholar 

  • Vester HF, Lawrence D, Eastman JR, Turner BL, Calmé S, Dickson R, Pozo C, Sangermano F. 2007. Land change in the southern Yucatan and Calakmul Biosphere Reserve: effects on habitat and biodiversity. Ecol Appl 17:989–1003.

    Article  PubMed  Google Scholar 

  • Vrška T, Přívětivý T, Janík D, Unar P, Šamonil P, Král K. 2015. Deadwood residence time in alluvial hardwood temperate forests—a key aspect of biodiversity conservation. For Ecol Manag 357:33–41.

    Article  Google Scholar 

  • Weedon JT, Cornwell WK, Cornelissen JH, Zanne AE, Wirth C, Coomes DA. 2009. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol Lett 12:45–56.

    Article  PubMed  Google Scholar 

  • Wu C, Wang H, Mo Q, Zhang Z, Huang G, Kong F, Liu Y, Wang GG. 2019. Effects of elevated UV-B radiation and N deposition on the decomposition of coarse woody debris. Sci Total Environ 663:170–176.

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Staab M, Yu M (2021) Canopy closure retards fine wood decomposition in subtropical regenerating forests. Ecosystems pp 1–16

  • Zuo J, Berg MP, van Hal J, van Logtestijn RS, Goudzwaard L, Hefting MM, Poorter L, Sterck FJ, Cornelissen JH (2020) Fauna community convergence during decomposition of deadwood across tree species and forests. Ecosystems, pp 1–13

Download references

Acknowledgements

Mexican National Council for Science and Technology (CONACyT) provided the scholarship funding (#316709) to the first author. BDJ received financial assistance from US Forest Service through the federal grant number 12-IJ-11242306-054. DRA received additional funding from the Science, Technology and Innovation Institute (ICTI) of the state government of Chiapas, Mexico (SEI 2020/268). We are thankful to the landowners from Calakmul who allowed us to collect wood pieces and establish experimental plots on their land. Regular collection and drying of wood samples in the field were done by Antonio Ramirez, Demetrio Alvarez, and Armando Velazquez. We are thankful to Doña Lucia and Doña Juanita for their kind cooperation in arranging logistics during fieldwork. We also thank Victoria Hernández, Beatriz Peña, Hugo Ruiz, Gabriel Chan, and Sarai Sánchez for laboratory assistance. We acknowledge the valuable comments from anonymous reviewers and editors on the earlier versions of the manuscript that highly strengthened this document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deb Raj Aryal.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3725 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aryal, D., De Jong, B.H.J., Gaona, S.O. et al. Fine Wood Decomposition Rates Decline with the Age of Tropical Successional Forests in Southern Mexico: Implications to Ecosystem Carbon Storage. Ecosystems 25, 661–677 (2022). https://doi.org/10.1007/s10021-021-00678-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00678-w

Keywords

Navigation