Skip to main content

Advertisement

Log in

Low Redox Decreases Potential Phosphorus Limitation on Soil Biogeochemical Cycling Along a Tropical Rainfall Gradient

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Humid tropical forests on highly weathered soils are often characterized by low bioavailable phosphorus (P) concentrations. These ecosystems also often experience low and fluctuating redox conditions. Little is known about how soil redox conditions affect P availability and how this might feedback on biogeochemical cycling. Here we used soils from a wet tropical rainfall gradient in Puerto Rico to explore the effects of redox on P bioavailability and associated biogeochemical processes. Concentrations of soil carbon (C) and poorly crystalline iron (Fe) and aluminum (Al) minerals increased at least twofold with increasing rainfall, reflecting stronger anaerobic conditions at wetter sites and associated declines in decomposition. The fraction of the total P pool in the NaOH-extractable organic form also generally increased with increasing rainfall. In a laboratory incubation experiment using three sites along the gradient, P amendment increased aerobic CO2 production. However, anaerobic processes, including anaerobic respiration, Fe reduction, and methanogenesis, increased with P amendment at the driest site only. Microbial biomass C:P ratios decreased with P amendment under anoxic conditions at the driest site, an indicator of possible microbial P limitation at this site. Both microbial biomass C and P concentrations were lower under anoxic conditions than under oxic conditions across all soils, suggesting that anoxic conditions could be a more limiting factor to microbes than P concentrations. Overall, our results demonstrate that redox conditions regulate the extent of P limitation to biogeochemical processes in tropical forest soils. Phosphorus limitation was pronounced in aerated environments with low mean annual rainfall, whereas low redox conditions or associated factors under high rainfall conditions may have a stronger impact on biogeochemical cycling than P availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Barcellos D, Cyle KT, Thompson A. 2018a. Faster redox fluctuations can lead to higher iron reduction rates in humid forest soils. Biogeochemistry.

  • Barcellos D, O’Connell CS, Silver W, Meile C, Thompson A. 2018b. Hot Spots and Hot Moments of Soil Moisture Explain Fluctuations in Iron and Carbon Cycling in a Humid Tropical Forest Soil. Soil Systems 2:59.

    Article  CAS  Google Scholar 

  • Barone JA, Thomlinson J, Cordero PA, Zimmerman JK. 2008. Metacommunity structure of tropical forest along an elevation gradient in Puerto Rico. Journal of Tropical Ecology 24:525–534.

    Article  Google Scholar 

  • Beinroth FH. 1982. Some highly weathered soils of Puerto Rico, 1. Morphology, formation and classification. Geoderma 27:1–73.

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Campbell AN, Tfaily MM, Lin Y, Kukkadapu RK, Silver W, Nico PS, Pett-Ridge J. 2018. Redox fluctuations control the coupled cycling of iron and carbon in tropical forest soils. Environmental Science & Technology.

  • Bouskill NJ, Wood TE, Baran R, Hao Z, Ye Z, Bowen BP, Lim HC, Nico PS, Holman H-Y, Gilbert B, Silver WL, Northen TR, Brodie EL. 2016. Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition. Frontiers in Microbiology 7:323.

    PubMed  PubMed Central  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry 14:319–329.

    Article  CAS  Google Scholar 

  • Brown S, Lugo AE, Silander S, Liegel L. 1983. Research history and opportunities in the Luquillo Experimental Forest: U.S. Department of Agriculture Forest Service, General Technical Report SO-44, Southern Forest Experiment Station, New Orleans, LA, 128 p.

  • Camenzind T, Hättenschwiler S, Treseder KK, Lehmann A, Rillig MC. 2017. Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs 0: 1–18.

  • Chacón N, Silver WL, Dubinsky EA, Cusack DF. 2006. Iron reduction and soil phosphorus solubilization in humid tropical forests soils: The roles of labile carbon pools and an electron shuttle compound. Biogeochemistry 78:67–84.

    Article  Google Scholar 

  • Chen C, Meile C, Wilmoth JL, Barcellos D, Thompson A. 2018. Influence of pO2 on iron redox cycling and anaerobic organic carbon mineralization in a humid tropical forest soil. Environmental Science & Technology 52:7709–7719.

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK. 2002. Phosphorus Limitation of Microbial Processes in Moist Tropical Forests: Evidence from Short-term Laboratory Incubations and Field Studies. Ecosystems 5:0680–0691.

    Article  CAS  Google Scholar 

  • Davidson EA, Samanta S, Caramori SS, Savage K. 2012. The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Global Change Biology 18:371–384.

    Article  Google Scholar 

  • Davies RB. 1987. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74:33–43.

    Google Scholar 

  • DeAngelis KM, Silver WL, Thompson AW, Firestone MK. 2010. Microbial communities acclimate to recurring changes in soil redox potential status. Environmental Microbiology 12:3137–3149.

    Article  CAS  PubMed  Google Scholar 

  • Dosseto A, Buss HL, Suresh PO. 2012. Rapid regolith formation over volcanic bedrock and implications for landscape evolution. Earth and Planetary Science Letters 337–338:47–55.

    Article  Google Scholar 

  • Dubinsky EA, Silver WL, Firestone MK. 2010. Tropical forest soil microbial communities couple iron and carbon biogeochemistry. Ecology 91:2604–2612.

    Article  PubMed  Google Scholar 

  • Fleischer K, Rammig A, De Kauwe MG, Walker AP, Domingues TF, Fuchslueger L, Garcia S, Goll DS, Grandis A, Jiang M, Haverd V, Hofhansl F, Holm JA, Kruijt B, Leung F, Medlyn BE, Mercado LM, Norby RJ, Pak B, von Randow C, Quesada CA, Schaap KJ, Valverde-Barrantes OJ, Wang Y-P, Yang X, Zaehle S, Zhu Q, Lapola DM. 2019. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience 12:736–741.

    Article  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM. 1998. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochimica Et Cosmochimica Acta 62:3239–3257.

    Article  CAS  Google Scholar 

  • Garcia-Martino AR, Warner GS, Scatena FN, Civco DL. 1996. Rainfall, runoff and elevation relationships in the Luquillo Mountains of Puerto Rico. Caribbean Journal of Science 32:413–424.

    Google Scholar 

  • Ginn B, Meile C, Wilmoth J, Tang Y, Thompson A. 2017. Rapid Iron Reduction Rates Are Stimulated by High-Amplitude Redox Fluctuations in a Tropical Forest Soil. Environmental Science & Technology 51:3250–3259.

    Article  CAS  Google Scholar 

  • Gould WA, González G, Carrero Rivera G. 2006. Structure and composition of vegetation along an elevational gradient in Puerto Rico. Journal of Vegetation Science 17:653–653.

    Article  Google Scholar 

  • Greenwood DJ. 1961. The effect of oxygen concentration on the decomposition of organic materials in soil. Plant and Soil: 360–376.

  • Gross A, Lin Y, Weber PK, Pett-Ridge J, Silver WL. 2020. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests. Ecology 101: e02928.

  • Gross A, Pett-Ridge J, Silver W. 2018. Soil Oxygen Limits Microbial Phosphorus Utilization in Humid Tropical Forest Soils. Soil Systems 2:65.

    Article  CAS  Google Scholar 

  • Guariguata MR. 1990. Landslide Disturbance and Forest Regeneration in the Upper Luquillo Mountains of Puerto Rico. Journal of Ecology 78:814–832.

    Article  Google Scholar 

  • Guggenberger G, Kaiser K. 2003. Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310.

    Article  CAS  Google Scholar 

  • Hall SJ, Silver WL. 2015. Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry 125:149–165.

    Article  CAS  Google Scholar 

  • Hall SJ, Treffkorn J, Silver WL. 2014. Breaking the enzymatic latch: impacts of reducing conditions on hydrolytic enzyme activity in tropical forest soils. Ecology 95:2964–2973.

    Article  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan B. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal 46:970–976.

    Article  CAS  Google Scholar 

  • Hessen DO, Anderson TR. 2008. Excess carbon in aquatic organisms and ecosystems: Physiological, ecological, and evolutionary implications. Limnology and Oceanography 53:1685–1696.

    Article  CAS  Google Scholar 

  • Huang W, Liu J, Wang YP, Zhou G, Han T, Li Y. 2013. Increasing phosphorus limitation along three successional forests in southern China. Plant and Soil 364:181–191.

    Article  CAS  Google Scholar 

  • Huang W, Ye C, Hockaday WC, Hall SJ. 2020. Trade-offs in soil carbon protection mechanisms under aerobic and anaerobic conditions. Global Change Biology n/a.

  • Hyacinthe C, Bonneville S, Van Cappellen P. 2006. Reactive iron (III) in sediments: chemical versus microbial extractions. Geochimica Et Cosmochimica Acta 70:4166–4180.

    Article  CAS  Google Scholar 

  • Jiang M, Medlyn BE, Drake JE, Duursma RA, Anderson IC, Barton CVM, Boer MM, Carrillo Y, Castañeda-Gómez L, Collins L, Crous KY, Kauwe MGD, Santos BMd, Emmerson KM, Facey SL, Gherlenda AN, Gimeno TE, Hasegawa S, Johnson SN, Kännaste A, Macdonald CA, Mahmud K, Moore BD, Nazaries L, Neilson EHJ, Nielsen UN, Niinemets Ü, Noh NJ, Ochoa-Hueso R, Pathare VS, Pendall E, Pihlblad J, Piñeiro J, Powell JR, Power SA, Reich PB, Renchon AA, Riegler M, Rinnan R, Rymer PD, Salomón RL, Singh BK, Smith B, Tjoelker MG, Walker JKM, Wujeska-Klause A, Yang J, Zaehle S, Ellsworth DS. 2020. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580:227–231.

    Article  CAS  PubMed  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165:277–304.

    Article  CAS  Google Scholar 

  • Kang H, Freeman C. 1999. Phosphatase and arylsulphatase activities in wetland soils: Annual variation and controlling factors. Soil Biology and Biochemistry 31:449–454.

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Kleber M, Fendorf S. 2016. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127:157–171.

    Article  CAS  Google Scholar 

  • Kouno K, Tuchiya Y, Ando T. 1995. Measurement of soil microbial biomass phosphorus by an anion exchange membrane method. Soil Biology and Biochemistry 27:1353–1357.

    Article  CAS  Google Scholar 

  • Lin Y, Bhattacharyya A, Campbell AN, Nico PS, Pett-Ridge J, Silver WL. 2018. Phosphorus fractionation responds to dynamic redox conditions in a humid tropical forest soil. Journal of Geophysical Research: Biogeosciences 123:3016–3027.

    Article  CAS  Google Scholar 

  • Lin Y, Gross A, O’Connell CS, Silver WL. 2020. Anoxic conditions maintained high phosphorus sorption in humid tropical forest soils. Biogeosciences 17:89–101.

    Article  CAS  Google Scholar 

  • Liptzin D, Silver WL. 2015. Spatial patterns in oxygen and redox sensitive biogeochemistry in tropical forest soils. Ecosphere 6:1–14.

    Article  Google Scholar 

  • Liptzin D, Silver WL, Detto M. 2011. Temporal dynamics in soil oxygen and greenhouse gases in two humid tropical forests. Ecosystems 14:171–182.

    Article  CAS  Google Scholar 

  • Loeppert RH, Inskeep WP. 1996. Iron. Sparks DL editor. Methods of Soil Analysis, Part 3. ASA and SSSA, Madison, WI, p639–664.

  • Mage SM, Porder S. 2012. Parent material and topography determine soil phosphorus status in the Luquillo Mountains of Puerto Rico. Ecosystems 16:284–294.

    Article  Google Scholar 

  • Maranguit D, Guillaume T, Kuzyakov Y. 2017. Effects of flooding on phosphorus and iron mobilization in highly weathered soils under different land-use types: Short-term effects and mechanisms. Catena 158:161–170.

    Article  CAS  Google Scholar 

  • McGechan MB, Lewis DR. 2002. Sorption of Phosphorus by Soil, Part 1: Principles, Equations and Models. Biosystems Engineering 82:1–24.

    Article  Google Scholar 

  • McGroddy M, Silver WL. 2000. Variations in belowground carbon storage and soil CO2 flux rates along a wet tropical climate gradient. Biotropica 32:614–624.

    Article  Google Scholar 

  • McGroddy ME, Silver WL, de Oliveira JC, de Mello WZ, Keller M. 2008. Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem. Journal of Geophysical Research: Biogeosciences 113:1–11.

    Article  Google Scholar 

  • Miller AJ, Schuur EAG, Chadwick OA. 2001. Redox control of phosphorus pools in Hawaiian montane forest soils. Geoderma 102:219–237.

    Article  CAS  Google Scholar 

  • Muggeo VMR. 2008. Segmented: an R package to fit regression models with broken-line relationships. R News 8:20–25.

    Google Scholar 

  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31–36.

    Article  CAS  Google Scholar 

  • Murphy SF, Stallard RF, Scholl MA, González G, Torres-Sánchez AJ. 2017. Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications. PLoS ONE 12.

  • Newman S, Reddy KR. 1993. Alkaline phosphatase activity in the sediment-water column of a hypereutrophic lake. Journal of Environmental Quality 22:832–838.

    Article  CAS  Google Scholar 

  • O’Connell CS, Ruan L, Silver WL. 2018. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nature Communications 9:1348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olander LP, Vitousek PM. 2004. Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7:404–419.

    Article  CAS  Google Scholar 

  • Park J-H, Matzner E. 2003. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 66:265–286.

    Article  CAS  Google Scholar 

  • Peretyazhko T, Sposito G. 2005. Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochimica Et Cosmochimica Acta 69:3643–3652.

    Article  CAS  Google Scholar 

  • Pett-Ridge J, Firestone MK. 2005. Redox fuctuation structures microbial communities in a wet tropical soil. Applied and Environmental Microbiology 71:6998–7007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pett-Ridge J, Petersen DG, Nuccio E, Firestone MK. 2013. Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil. FEMS Microbiology Ecology 85:179–194.

    Article  PubMed  Google Scholar 

  • Pett-Ridge JC. 2009. Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico. Biogeochemistry 94:63–80.

    Article  CAS  Google Scholar 

  • Ping C-l, Michaelson GJ, Stiles CA, González G. 2013. Soil characteristics, carbon stores, and nutrient distribution in eight forest types along an elevation gradient, eastern Puerto Rico. Ecological Bulletins 54:67–86.

    Google Scholar 

  • Porder S, Hilley GE, Chadwick OA. 2007. Chemical weathering, mass loss, and dust inputs across a climate by time matrix in the Hawaiian Islands. Earth and Planetary Science Letters 258:414–427.

    Article  CAS  Google Scholar 

  • Porder S, Johnson AH, Xing HX, Brocard G, Goldsmith S, Pett-Ridge J. 2015. Linking geomorphology, weathering and cation availability in the Luquillo Mountains of Puerto Rico. Geoderma 249–250:100–110.

    Article  Google Scholar 

  • Postma D, Jakobsen R. 1996. Redox zonation: equilibrium constraints on the Fe (III)/SO4-reduction interface. Geochimica Et Cosmochimica Acta 60:3169–3175.

    Article  Google Scholar 

  • R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Rakotoson T, Amery F, Rabeharisoa L, Smolders E. 2014. Soil flooding and rice straw addition can increase isotopic exchangeable phosphorus in P-deficient tropical soils. Soil Use and Management 30:189–197.

    Google Scholar 

  • Reed SC, Yang X, Thornton PE. 2015. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor. New Phytologist 208:324–329.

    Article  CAS  Google Scholar 

  • Reyes I, Torrent J. 1997. Citrate-Ascorbate as a highly selective extractant for poorly crystalline iron oxides. Soil Science Society of America Journal 61:1647–1654.

    Article  CAS  Google Scholar 

  • Richardson BA, Richardson MJ, Soto-adames FN. 2005. Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. Journal of Animal Ecology: 926–936.

  • Rousk J, Jones DL. 2010. Loss of low molecular weight dissolved organic carbon (DOC) and nitrogen (DON) in H2O and 0.5 M K2SO4 soil extracts. Soil Biology and Biochemistry 42:2331–2335.

    Article  CAS  Google Scholar 

  • Roy ED, Willig E, Richards P, Martinelli LA, Vazquez FF, Pegorini L, Spera SA, Porder S. 2017. Soil phosphorus sorption capacity after three decades of intensive fertilization in Mato Grosso, Brazil. Agriculture, Ecosystems and Environment 249:206–214.

    Article  CAS  Google Scholar 

  • Saunders WMH, Williams EG. 1955. Observations of the determination of total organic phosphorus in soils. European Journal of Soil Science 6:254–267.

    Article  CAS  Google Scholar 

  • Schuur EAG, Chadwick OA, Matson PA. 2001. Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology 82:3182–3196.

    Article  Google Scholar 

  • Shiels AB, Walker LR. 2013. Landslides cause spatial and temporal gradients at multiple scales in the Luquillo Mountains of Puerto Rico. Ecological Bulletins 54:211–221.

    Google Scholar 

  • Silver WL. 1998. The potential effects of elevated CO 2 and climate change on tropical forest soils and biogeochemical cycling. Potential Impacts of Climate Change on Tropical Forest Ecosystems: Springer. pp 197–221.

    Google Scholar 

  • Silver WL, Liptzin D, Almaraz M. 2013. Soil redox dynamics and biogeochemistry along a tropical elevation gradient. Ecological Bulletins 54:195–209.

    Google Scholar 

  • Silver WL, Lugo AE, Keller M. 1999. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328.

    Article  Google Scholar 

  • Soong JL, Marañon-Jimenez S, Cotrufo MF, Boeckx P, Bodé S, Guenet B, Peñuelas J, Richter A, Stahl C, Verbruggen E, Janssens IA. 2018. Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropical soil incubation. Soil Biology and Biochemistry 122:141–149.

    Article  CAS  Google Scholar 

  • Stahr S, Graf-rosenfellner M, Klysubun W, Mikutta R, Prietzel J, Lang F. 2017. Phosphorus speciation and C:N:P stoichiometry of functional organic matter fractions in temperate forest soils. Plant and Soil 427:53–69.

    Article  Google Scholar 

  • Tanner EVJ, Vitousek PMa, Cuevas E. . 1998. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22.

    Article  Google Scholar 

  • Teh YA, Silver WL, Conrad ME. 2005. Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology 11:1283–1297.

    Article  Google Scholar 

  • Tiessen H, Moir JO. 1993. Characterization of available P by sequential extraction. Soil Sampling and Methods of Analysis, p75–86.

  • Turner BL, Brenes-Arguedas T, Condit R. 2018. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555:367–370.

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Engelbrecht BMJ. 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103:297–315.

    Article  CAS  Google Scholar 

  • USDA Natural Resources Conservation Service. 2002. Soil Survey of Caribbean National Forest and Luquillo Experimental Forest, Commonwealth of Puerto Rico. USDA: U.S. Govt. Print. Office, Washington, DC.

  • Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19:703–707.

    Article  CAS  Google Scholar 

  • Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P. 2000. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry 15:785–790.

    Article  CAS  Google Scholar 

  • Vitousek PM, Aplet G, Turner D, Lockwood JJ. 1992. The Mauna Loa environmental matrix: foliar and soil nutrients. Oecologia 89:372–382.

    Article  PubMed  Google Scholar 

  • Vitousek PM, Matson PA, Turner DR. 1988. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77:565–570.

    Article  PubMed  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20:5–15.

    Article  PubMed  Google Scholar 

  • Walker TW, Adams AFR. 1958. Studies on soil organic matter: I. Influence of phosphorus content of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Science 85:307–318.

    Article  CAS  Google Scholar 

  • Weaver PL, Murphy PG. 1990. Forest structure and productivity in Puerto Rico’s Luquillo Mountains. Biotropica 22:69–82.

    Article  Google Scholar 

  • Werner FA, Homeier J. 2015. Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology 29:430–440.

    Article  Google Scholar 

  • Willig MR, Presley SJ, Bloch CP, Castro-Arellano I, Cisneros LM, Higgins CL, Klingbeil BT. 2011. Tropical metacommunities along elevational gradients: Effects of forest type and other environmental factors. Oikos 120:1497–1508.

    Article  Google Scholar 

  • Wood TE, Silver WL. 2012. Strong spatial variability in trace gas dynamics following experimental drought in a humid tropical forest. Global Biogeochemical Cycles 26(3).

  • Wood TE, Detto M, Silver WL. 2013. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS ONE 8:e80965.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright SJ. 2019. Plant responses to nutrient addition experiments conducted in tropical forests. Ecological Monographs 89: e01382.

  • Wuenscher R, Unterfrauner H, Peticzka R, Zehetner F. 2015. A comparison of 14 soil phosphorus extraction methods applied to 50 agricultural soils from Central Europe. Plant, Soil and Environment 61:86–96.

    Article  CAS  Google Scholar 

  • Yang X, Warren M, Zou X. 2007. Fertilization responses of soil litter fauna and litter quantity, quality, and turnover in low and high elevation forests of Puerto Rico. Applied Soil Ecology 37:63–71.

    Article  CAS  Google Scholar 

  • Yu L, Ahrens B, Wutzler T, Schrumpf M, Zaehle S. 2020. Jena Soil Model (JSM v1.0; revision 1934): a microbial soil organic carbon model integrated with nitrogen and phosphorus processes. Geosci. Model Dev. 13:783–803.

    Article  CAS  Google Scholar 

  • Zeglin LH, Stursova M, Sinsabaugh RL, Collins SL. 2007. Microbial responses to nitrogen addition in three contrasting grassland ecosystems. Oecologia 154:349–359.

    Article  PubMed  Google Scholar 

  • Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Richter A, Wanek W. 2019. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology and Biochemistry 128:45–55.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Riley WJ, Tang J, Koven CD. 2016. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. Biogeosciences 13:341–363.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Summer Ahmed, Nikhil Chari, Heather Dang, Omar Gutiérrez del Arroyo, Jordan Stark, Jamarys Torres Diaz, Jesus Gomez, Jess Zimmerman, Jean Lodge, Sarah Stankavich, Grizelle Gonzalez, and Sharon Rodríguez for their support in the laboratory and in the field. Tyler Anthony, Allegra Mayer, Bill McDowell, Christine O’Connell, and Stephen Porder provided helpful advice. We thank the Subject-Matter Editor, Peter Vitousek, and two anonymous reviewers for helpful comments on this manuscript. This work was supported by an NSF Grant to WLS DEB-1457805, as well as the NSF-sponsored Luquillo CZO (EAR-1331841), and LTER (DEB-0620910). Additional support was provided by the DOE Grant TES-DE-FOA-0000749 and the USDA National Institute of Food and Agriculture, McIntire Stennis project CA-B-ECO-7673-MS to WLS. Data from this study are publicly available via Hydroshare (https://www.hydroshare.org/resource/186d2949101f4bba8159818a97b926c5/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Yang Lin and Avner Gross contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Gross, A. & Silver, W.L. Low Redox Decreases Potential Phosphorus Limitation on Soil Biogeochemical Cycling Along a Tropical Rainfall Gradient. Ecosystems 25, 387–403 (2022). https://doi.org/10.1007/s10021-021-00662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00662-4

Keywords

Navigation