Skip to main content

Advertisement

Log in

Early Tree Diversity and Composition Effects on Topsoil Chemistry in Young Forest Plantations Depend on Site Context

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Trees have a strong influence on the chemical properties of the soil in which they grow. Establishing plantations with different tree species combinations thus potentially leads to divergence in soil chemistry. To study the degree to which differentiation already occurs during the first years after establishment, we made use of a biodiversity–ecosystem functioning experiment in Belgium, FORBIO. The multi-site experiment replicates tree species richness (1–4 species) and composition in three sites. The sites represent contrasting site contexts, mostly land-use history, soil, and climate. Soil samples (0–10 cm) were taken at the time of planting and approximately 8 years later. We measured the total C and N concentration, the Olsen P, the pH-H2O, and the concentration of base and Al cations. The change in chemical composition was strongly dependent on site conditions including former land use. Afforestation on former cropland had a positive impact on total C and Olsen P and a negative effect on base cations and pH. On sites reforested after clear-cut, soil texture and particular site preparation played an important role. On top of that, we found several significant effects of species composition. Strongest composition effects were detected in the reforested site on loamy soil with little soil disturbance. This study highlights that species choice can already affect soil chemistry in early stages of forest development, but that the nature of the effects may strongly depend on the context in which the plantations are established. Further research is needed to identify the most important contextual factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Achat DL, Deleuze C, Landmann G, Pousse N, Ranger J, Augusto L. 2015. Quantifying consequences of removing harvesting residues on forest soils and tree growth - A meta-analysis. For Ecol Manage 348:124–141.

    Article  Google Scholar 

  • Aitken RL. 1992. Relationships between extractable al, selected soil properties, PH buffer capacity and lime requirement in some acidic Queensland soils. Aust J Soil Res 30:119–130.

    Article  CAS  Google Scholar 

  • Andrews JA, Schlesinger WH. 2001. Soil CO 2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO 2 enrichment. Global Biogeochem Cycles 15:149–62. http://doi.wiley.com/https://doi.org/10.1029/2000GB001278. Last accessed 28/04/2020

  • Augusto L, Ranger J, Binkley D, Rothe A. 2002. Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59:233–53. http://www.edpsciences.org/https://doi.org/10.1051/forest:2002020. Last accessed 18/05/2018

  • Balesdent J, Chenu C, Balabane M. 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230.

    Article  Google Scholar 

  • Barbier S, Gosselin F, Balandier P. 2008. Influence of tree species on understory vegetation diversity and mechanisms involved-A critical review for temperate and boreal forests. For Ecol Manage 254:1–15.

    Article  Google Scholar 

  • Bárcena TG, Gundersen P, Vesterdal L. 2014. Afforestation effects on SOC in former cropland: oak and spruce chronosequences resampled after 13 years. Glob Chang Biol 20:2938–52. http://doi.wiley.com/https://doi.org/10.1111/gcb.12608. Last accessed 12/05/2020

  • Bélanger N, Paré D, Yamasaki SH. 2003. The soil acid-base status of boreal black spruce stands after whole-tree and stem-only harvesting. Can J For Res 33:1874–9. http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/x03-113. Last accessed 17/04/2020

  • Berthrong ST, Jobbágy EG, Jackson RB. 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–41. http://doi.wiley.com/https://doi.org/10.1890/08-1730.1.

  • Bocock KL. 1964. Changes in the Amounts of Dry Matter, Nitrogen, Carbon and Energy in Decomposing Woodland Leaf Litter in Relation to the Activities of the Soil Fauna. J Ecol 52:273.

    Article  Google Scholar 

  • Brassard BW, Chen HYH, Bergeron Y, Paré D. 2011. Differences in fine root productivity between mixed- and single-species stands. Funct Ecol. 25:238–46. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1111/j.1365-2435.2010.01769.x.

  • Butnor JR, Johnsen KH, Sanchez FG. 2006. Whole-tree and forest floor removal from a loblolly pine plantation have no effect on forest floor CO2 efflux 10 years after harvest. For Ecol Manage 227:89–95.

    Article  Google Scholar 

  • Carlyle JC. 1995. Nutrient management in a Pinus radiata plantation after thinning: the effect of thinning and residues on nutrient distribution, mineral nitrogen fluxes, and extractable phosphorus. Can J For Res 25:1278–91. http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/x95-141.

  • Chapman SK, Koch GW. 2007. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil 299:153–162.

    Article  CAS  Google Scholar 

  • Compton JE, Boone RD, Motzkin G, Foster DR. 1998. Soil carbon and nitrogen in a pine-oak sand plain in central Massachusetts: Role of vegetation and land-use history. Oecologia 116:536–542.

    Article  PubMed  Google Scholar 

  • Cremer M, Prietzel J. 2017. Soil acidity and exchangeable base cation stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. Plant Soil 415:393–405.

    Article  CAS  Google Scholar 

  • Cremer M, Kern NV, Prietzel J. 2016. Soil organic carbon and nitrogen stocks under pure and mixed stands of European beech, Douglas fir and Norway spruce. For Ecol Manage 367:30–40.

    Article  Google Scholar 

  • Dagnelie P, Palm R, Rondeux J, Thill A. 1988. Tables de production relatives à l’épicéa commun. Gembloux, Belgium: Les Presses Agronomiques de Gembloux. p 122.

    Google Scholar 

  • Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L. 2016. Is Tree Species Diversity or Species Identity the More Important Driver of Soil Carbon Stocks, C/N Ratio, and pH? Ecosystems 19:645–60. http://link.springer.com/https://doi.org/10.1007/s10021-016-9958-1.

  • De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K. 2007. The effect of forest type on throughfall deposition and seepage flux: A review. Oecologia 153:663–674.

    Article  PubMed  Google Scholar 

  • De Schrijver A, De Frenne P, Staelens J, Verstraeten G, Muys B, Vesterdal L, Wuyts K, Van Nevel L, Schelfhout S, De Neve S, Verheyen K. 2012. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob Chang Biol 18:1127–40. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1111/j.1365-2486.2011.02572.x.

  • DeByle N V. 1980. Harvesting and site treatment influences on the nutrient status of lodgepol pine forests in western wyoming.

  • Deng Q, McMahon DE, Xiang Y, Yu C-L, Jackson RB, Hui D. 2017. A global meta-analysis of soil phosphorus dynamics after afforestation. New Phytol 213:181–92. http://doi.wiley.com/https://doi.org/10.1111/nph.14119.

  • Díaz S, Cabido M. 2001. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655.

    Article  Google Scholar 

  • Eviner VT, Chapin III FS. 2003. Functional Matrix: A Conceptual Framework for Predicting Multiple Plant Effects on Ecosystem Processes. Annu Rev Ecol Evol Syst 34:455–85. http://www.annualreviews.org/doi/https://doi.org/10.1146/annurev.ecolsys.34.011802.132342.

  • Eviner VT, Hawkes C V. 2008. Embracing variability in the application of plant-soil interactions to the restoration of communities and ecosystems. Restor Ecol 16:713–29. http://doi.wiley.com/https://doi.org/10.1111/j.1526-100X.2008.00482.x.

  • Falkengren-Grerup U, Ten Brink DJ, Brunet J. 2006. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage 225:74–81.

    Article  Google Scholar 

  • FAO and UNEP. 2020. State of the World’s Forests 2020: forestry, biodiversity and people. Rome: Rome

  • Gartner TB, Cardon ZG. 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–46. http://doi.wiley.com/https://doi.org/10.1111/j.0030-1299.2004.12738.x.

  • Gelman A, Hill J. 2007. Simulation of probability models and statistical inferences. In: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press. pp 137–54.

  • Gilbert J, Gowing D, Wallace H. 2009. Available soil phosphorus in semi-natural grasslands: Assessment methods and community tolerances. Biol Conserv 142:1074–1083.

    Article  Google Scholar 

  • Guckland A, Jacob M, Flessa H, Thomas FM, Leuschner C. 2009. Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutr Soil Sci 172:500–11. http://doi.wiley.com/https://doi.org/10.1002/jpln.200800072.

  • Hagen-Thorn A, Callesen I, Armolaitis K, Nihlgård B. 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For Ecol Manage 195:373–384.

    Article  Google Scholar 

  • Helling CS, Chesters G, Corey RB. 1964. Contribution of Organic Matter and Clay to Soil Cation-Exchange Capacity as Affected by the pH of the Saturating Solution. Soil Sci Soc Am J 28:517–20. http://doi.wiley.com/https://doi.org/10.2136/sssaj1964.03615995002800040020x.

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P. 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–97. https://esajournals.onlinelibrary.wiley.com/doi/full/https://doi.org/10.1890/0012-9658%282006%2987%5B2288%3ATSEODA%5D2.0.CO%3B2.

  • IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA. 2007. How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268.

    Article  CAS  Google Scholar 

  • Jenny H. 1980. The soil resource: origin and behavior. New York, N.Y. (USA) Springer Verlag

  • Jobbágy EG, Jackson RB. 2003. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64:205–229.

    Article  Google Scholar 

  • Jucker T, Avăcăriei D, Bărnoaiea I, Duduman G, Bouriaud O, Coomes DA. 2016. Climate modulates the effects of tree diversity on forest productivity. Gilliam F, editor. J Ecol 104:388–98. http://doi.wiley.com/https://doi.org/10.1111/1365-2745.12522.

  • Kepfer-Rojas S, Verheyen K, Johannsen VK, Schmidt IK. 2015. Indirect effects of land-use legacies determine tree colonization patterns in abandoned heathland. Ewald J, editor. Appl Veg Sci 18:456–66. http://doi.wiley.com/https://doi.org/10.1111/avsc.12169.

  • Kirby KR, Potvin C. 2007. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For Ecol Manage 246:208–221.

    Article  Google Scholar 

  • Kirwan L, Connolly J, Finn JA, Brophy C, Lüscher A, Nyfeler D, Sebastià M-T. 2009. Diversity–interaction modeling: estimating contributions of species identities and interactions to ecosystem function. Ecology 90:2032–8. http://doi.wiley.com/https://doi.org/10.1890/08-1684.1.

  • Laganière J, Angers DA, Paré D. 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–53. http://doi.wiley.com/https://doi.org/10.1111/j.1365-2486.2009.01930.x.

  • Lajtha K, Driscoll CT, Jarrel WM, Elliott ET. 1999. Soil phosphorus: characterization and total element analysis. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P, editors. Standard soil methods for long-term ecological research. New York, NY: Oxford University Press. pp 115–42. https://andrewsforest.oregonstate.edu/publications/2710. Last accessed 17/03/2020

  • Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22.

    Article  CAS  Google Scholar 

  • Landuyt D, De Lombaerde E, Perring MP, Hertzog LR, Ampoorter E, Maes SL, De Frenne P, Ma S, Proesmans W, Blondeel H, Sercu BK, Wang B, Wasof S, Verheyen K. 2019. The functional role of temperate forest understorey vegetation in a changing world. Glob Chang Biol 25:3625–3641.

    Article  PubMed  Google Scholar 

  • Langenbruch C, Helfrich M, Flessa H. 2012. Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant Soil 352:389–403.

    Article  CAS  Google Scholar 

  • Li D, Niu S, Luo Y. 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–81. http://doi.wiley.com/https://doi.org/10.1111/j.1469-8137.2012.04150.x.

  • Liu L, King JS, Booker FL, Giardina CP, Lee Allen H, Hu S. 2009. Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: A microcosm study. Glob Chang Biol 15:441–453.

    Article  Google Scholar 

  • Mack J, Hatten J, Sucre E, Roberts S, Leggett Z, Dewey J. 2014. The effect of organic matter manipulations on site productivity, soil nutrients, and soil carbon on a southern loblolly pine plantation. For Ecol Manage 326:25–35.

    Article  Google Scholar 

  • Mayer M, Prescott CE, Abaker WEA, Augusto L, Cécillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau JP, Laganière J, Nouvellon Y, Paré D, Stanturf JA, Vanguelova EI, Vesterdal L. 2020. Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For Ecol Manage 466:118127.

    Article  Google Scholar 

  • Mendham DS, O’Connell AM, Grove TS, Rance SJ. 2003. Residue management effects on soil carbon and nutrient contents and growth of second rotation eucalypts. For Ecol Manage 181:357–372.

    Article  Google Scholar 

  • Merganičová K, Pietsch SA, Hasenauer H. 2005. Testing mechanistic modeling to assess impacts of biomass removal. For Ecol Manage 207:37–57.

    Article  Google Scholar 

  • Neyman J. 1957. ‘Inductive Behavior’ as a Basic Concept of Philosophy of Science. Rev l’Institut Int Stat / Rev Int Stat Inst 25:22.

    Google Scholar 

  • Olsson BA, Bengtsson J, Lundkvist H. 1996. Effects of different forest harvest intensities on the pools of exchangeable cations in coniferous forest soils. For Ecol Manage 84:135–147.

    Article  Google Scholar 

  • Ortiz CA, Lundblad M, Lundström A, Stendahl J. 2014. The effect of increased extraction of forest harvest residues on soil organic carbon accumulation in Sweden. Biomass and Bioenergy 70:230–238.

    Article  CAS  Google Scholar 

  • Paquette A, Messier C. 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–80. http://doi.wiley.com/https://doi.org/10.1111/j.1466-8238.2010.00592.x.

  • Prescott CE. 2010. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149.

    Article  CAS  Google Scholar 

  • Prescott CE, Grayston SJ. 2013. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For Ecol Manage 309:19–27.

    Article  Google Scholar 

  • R Core Team. 2019. R: A language and environment for statistical computing. https://www.r-project.org/

  • Rasmussen L. 1998. Effects of afforestation and deforestation on the deposition, cycling and leaching of elements. In: Agriculture, Ecosystems and Environment. Vol. 67. Elsevier. pp 153–9.

  • Ratcliffe S, Wirth C, Jucker T, van der Plas F, Scherer-Lorenzen M, Verheyen K, Allan E, Benavides R, Bruelheide H, Ohse B, Paquette A, Ampoorter E, Bastias CC, Bauhus J, Bonal D, Bouriaud O, Bussotti F, Carnol M, Castagneyrol B, Chećko E, Dawud SM, Wandeler H De, Domisch T, Finér L, Fischer M, Fotelli M, Gessler A, Granier A, Grossiord C, Guyot V, Haase J, Hättenschwiler S, Jactel H, Jaroszewicz B, Joly F-X, Kambach S, Kolb S, Koricheva J, Liebersgesell M, Milligan H, Müller S, Muys B, Nguyen D, Nock C, Pollastrini M, Purschke O, Radoglou K, Raulund-Rasmussen K, Roger F, Ruiz-Benito P, Seidl R, Selvi F, Seiferling I, Stenlid J, Valladares F, Vesterdal L, Baeten L. 2017. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Bardgett R, editor. Ecol Lett 20:1414–26. http://doi.wiley.com/https://doi.org/10.1111/ele.12849.

  • Ritter E, Vesterdal L, Gundersen P. 2003. Changes in soil properties after afforestation of former intensively managed soils with oak and Norway spruce. Plant Soil 249:319–330.

    Article  CAS  Google Scholar 

  • Sanchez FG, Tiarks AE, Kranabetter JM, Page-Dumroese DS, Powers RF, Sanborn PT, Chapman WK. 2006. Effects of organic matter removal and soil compaction on fifth-year mineral soil carbon and nitrogen contents for sites across the United States and Canada. Can J For Res 36:565–76. http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/x05-259.

  • Schelfhout S, Mertens J, Verheyen K, Vesterdal L, Baeten L, Muys B, De Schrijver A. 2017. Tree Species Identity Shapes Earthworm Communities. Forests 8:85. http://www.mdpi.com/1999-4907/8/3/85.

  • Schleuß P-M, Heitkamp F, Leuschner C, Fender A-C, Jungkunst HF. 2014. Higher subsoil carbon storage in species-rich than species-poor temperate forests. Environ Res Lett 9:014007. http://stacks.iop.org/1748-9326/9/i=1/a=014007?key=crossref.ec6e3eef8df24a97ec072049b0739a93.

  • Schmidt M, Veldkamp E, Corre MD. 2015. Tree species diversity effects on productivity, soil nutrient availability and nutrient response efficiency in a temperate deciduous forest. For Ecol Manage 338:114–123.

    Article  Google Scholar 

  • Schreiber JD, Duffy PD, McDowell LL. 1990. Nutrient Leaching of a Loblolly Pine Forest Floor by Simulated Rainfall I. Intensity Effects. For Sci 36:765–776.

    Google Scholar 

  • Schulp CJE, Nabuurs GJ, Verburg PH, de Waal RW. 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. For Ecol Manage 256:482–490.

    Article  Google Scholar 

  • Sercu BK, Baeten L, van Coillie F, Martel A, Lens L, Verheyen K, Bonte D. 2017. How tree species identity and diversity affect light transmittance to the understory in mature temperate forests. Ecol Evol 7:10861–70. http://doi.wiley.com/https://doi.org/10.1002/ece3.3528.

  • Sorn-Srivichai P, Tillman RW, Syers JK, Cornforth IS. 1984. The effect of soil pH on Olsen bicarbonate phosphate values. J Sci Food Agric 35:257–64. http://doi.wiley.com/https://doi.org/10.1002/jsfa.2740350303.

  • Strömgren M, Mjöfors K, Olsson BA. 2017. Soil-surface CO 2 flux during the first 2 years after stump harvesting and site preparation in 14 Swedish forests. Scand J For Res 32:213–21. https://www.tandfonline.com/doi/full/https://doi.org/10.1080/02827581.2016.1221993. Last accessed 19/11/2020

  • Sutinen R, Gustavsson N, Hänninen P, Middleton M, Räisänen ML. 2019. Impact of mechanical site preparation on soil properties at clear-cut Norway spruce sites on mafic rocks of the Lapland Greenstone Belt. Soil Tillage Res 186:52–63.

    Article  Google Scholar 

  • Thiffault E, Hannam KD, Paré D, Titus BD, Hazlett PW, Maynard DG, Brais S. 2011. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests-A review. Environ Rev 19:278–309.

    Article  Google Scholar 

  • Toïgo M, Vallet P, Perot T, Bontemps J-D, Piedallu C, Courbaud B. 2015. Overyielding in mixed forests decreases with site productivity. Canham C, editor. J Ecol 103:502–12. http://doi.wiley.com/https://doi.org/10.1111/1365-2745.12353.

  • Twine TE, Kucharik CJ. 2009. Climate impacts on net primary productivity trends in natural and managed ecosystems of the central and eastern United States. Agric For Meteorol 149:2143–2161.

    Article  Google Scholar 

  • Van de Peer T, Verheyen K, Ponette Q, Setiawan NN, Muys B. 2018. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. Hector A, editor. J Ecol 106:1096–105. http://doi.wiley.com/https://doi.org/10.1111/1365-2745.12839.

  • Van Lysebettens L. 2019. Bodem- en kruidlaagdynamiek in het jonge boomsoortendiversiteitsexperiment FORBIO - Master Thesis.

  • Verheyen K, Bossuyt B, Hermy M, Tack G. 1999. The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128.

    Article  Google Scholar 

  • Verheyen K, Ceunen K, Ampoorter E, Baeten L, Bosman B, Branquart E, Carnol M, De Wandeler H, Grégoire J-C, Lhoir P, Muys B, Setiawan NN, Vanhellemont M, Ponette Q. 2013. Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecol Evol 146:26–35. http://www.ingentaconnect.com/content/botbel/plecevo/2013/00000146/00000001/art00003.

  • Verheyen K, Vanhellemont M, Auge H, Baeten L, Baraloto C, Barsoum N, Bilodeau-Gauthier S, Bruelheide H, Castagneyrol B, Godbold D, Haase J, Hector A, Jactel H, Koricheva J, Loreau M, Mereu S, Messier C, Muys B, Nolet P, Paquette A, Parker J, Perring M, Ponette Q, Potvin C, Reich P, Smith A, Weih M, Scherer-Lorenzen M. 2016. Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45:29–41. http://link.springer.com/https://doi.org/10.1007/s13280-015-0685-1.

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P. 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manage 255:35–48.

    Article  Google Scholar 

  • Wan X, Xiao L, Vadeboncoeur MA, Johnson CE, Huang Z. 2018. Response of mineral soil carbon storage to harvest residue retention depends on soil texture: A meta-analysis. For Ecol Manage 408:9–15.

    Article  Google Scholar 

  • Zerpa JL, Allen HL, McLaughlin BC, Phelan J, Campbell RG, Hu S. 2014. Postharvest forest floor manipulation effects on nutrient dynamics in a loblolly pine (Pinus taeda) plantation. Can J For Res 44:1058–67. http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/cjfr-2013-0536.

Download references

Acknowledgements

E.D. holds a doctoral fellowship and P.D.S. a post-doctoral fellowship of the Research Foundation Flanders (FWO). We would like to thank the following people for the technical support. Robbe De Beelde, Kris Ceunen, Geydis Green Renoso, Shengmin Zhang, Margot Vanhellemont carried out the soil sampling. Tree measurements were performed by Kris Ceunen, Robbe De Beelde, Luc Willems, Eric Van Beek, and Olivier Boucher. Chemical analysis was executed by Luc Willems and Greet De Bruyn. We also want to thank the two anonymous reviewers for their insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els Dhiedt.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiedt, E., Verheyen, K., De Smedt, P. et al. Early Tree Diversity and Composition Effects on Topsoil Chemistry in Young Forest Plantations Depend on Site Context. Ecosystems 24, 1638–1653 (2021). https://doi.org/10.1007/s10021-021-00605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00605-z

Keywords

Navigation