Skip to main content

Advertisement

Log in

Local and Regional Drivers of Environmental Changes in Two Subtropical Montane Ponds (Central China) Over the Last Two Centuries

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Central China, one of the Earth’s distinctive ecoregions due to its endemic subtropical biota, has been subjected to enhanced nitrogen deposition and climate warming during recent decades. However, the extent and timescale of ecological changes are largely unexplored. Multiproxy analyses (diatoms, photosynthetic pigments and geochemistry) of 210Pb-dated sediment cores from two shallow ponds within an alpine basin (central China) were used to investigate the response of primary producer communities to external stressors during the last two centuries. The study sites include one drainage pond and one seepage pond. Both ponds exhibited unambiguous changes in production and composition of photoautotrophs since the early twentieth century, which are linked to climate warming, nitrogen deposition and local factors (for example, lake morphometry, desiccation and macrophyte). Although primary producers responded to regional warming and nitrogen deposition, the ecological responses differed among ponds due to local factors. In the deeper seepage pond, light attenuation due to terrestrial organic matter input caused recent decreases in carotenoids and small fragilarioid taxa. In contrast, the co-occurrence of euterrestrial and tychoplanktonic diatoms in the shallower drainage pond was indicative of its hydrological instability. Our results indicate that subtropical montane ponds in the East Asian monsoon region appear to be strongly influenced by a combination of local (for example, catchment-lake connectivity) and regional driving forces (for example, warming and nitrogen deposition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

modified from the maps downloaded from http://www.lib.utexas.edu/maps/asia.html and Google Earth, respectively.

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Ackerman D, Millet DB, Chen X. 2019. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles 33:1–8.

    Google Scholar 

  • Appleby PG. 2001. Chronostratigraphic techniques in recent sediments. In: Last W, Smol J, Eds. Tracking environmental change using lake sediments. Amsterdam: Springer. p 171–203.

    Google Scholar 

  • Baron JS, Driscoll CT, Stoddard JL, Richer EE. 2011. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Bioscience 61:602–13.

    Google Scholar 

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S. 2001. Quantitative ecology and palaeoecology. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K, Eds. Tracking environmental change using lake sediments. Amsterdam: Springer. p 155–202.

    Google Scholar 

  • Bennett KD. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–70.

    CAS  PubMed  Google Scholar 

  • Bergström AK, Jansson M. 2006. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biol 12:635–43.

    Google Scholar 

  • Bergström AK, Karlsson J. 2019. Light and nutrient control phytoplankton biomass responses to global change in northern lakes. Global Change Biol 25:2021–9.

    Google Scholar 

  • Binford MW, Brenner M, Whitmore TJ, Higuera-Gundy A, Deevey ES, Leyden B. 1987. Ecosystems, paleoecology and human disturbance in subtropical and tropical America. Quat Sci Rev 6:115–28.

    Google Scholar 

  • Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci 110:20882.

    CAS  PubMed  Google Scholar 

  • Briddon C, McGowan S, Metcalfe S, Panizzo V, Lacey J, Engels S, Leng M, Mills K, Shafiq M, Idris M. 2020. Diatoms in a sediment core from a flood pulse wetland in Malaysia record strong responses to human impacts and hydro-climate over the past 150 years. Geo: Geography and Environment 7.

  • Caballero-Miranda M. 1996. The diatom flora of two acid lakes in central Mexico. Diatom Res 11:227–40.

    Google Scholar 

  • Catalan J, Pla-Rabés S, Wolfe A, Smol J, Rühland K, Anderson NJ, Kopáček J, Stuchlík E, Schmidt R, Koinig K, Camarero L, Flower R, Heiri O, Kamenik C, Korhola A, Leavitt P, Psenner R, Renberg I. 2013. Global change revealed by palaeolimnological records from remote lakes: a review. J Paleolimnol 49:513–35.

    Google Scholar 

  • Chen J, Liu J, Xie C, Chen G, Chen J, Zhang Z, Zhou A, Rühland KM, Smol JP, Chen F. 2018. Biogeochemical responses to climate change and anthropogenic nitrogen deposition from a ∼ 200-year record from Tianchi Lake, Chinese Loess Plateau. Quat Int 493:22–30.

    Google Scholar 

  • Chen C, Zhao L, Zhu C, Wang J, Jiang J, Yang S. 2014. Response of diatom community in Lugu Lake (Yunnan–Guizhou Plateau, China) to climate change over the past century. J Paleolimnol 51:357–73.

    Google Scholar 

  • Chen X, Bu Z, Stevenson MA, Cao Y, Zeng L, Qin B. 2016. Variations in diatom communities at genus and species levels in peatlands (central China) linked to microhabitats and environmental factors. Sci Total Environ 568:137–46.

    CAS  PubMed  Google Scholar 

  • Chen X, Stevenson MA, Zeng L, Qiao Q. 2017. Diatom distribution in an alpine basin (central China) in relation to environmental factors and substrata. Diatom Res 32:251–62.

    Google Scholar 

  • Consalvey M, Paterson DM, Underwood GJC. 2004. The ups and downs of life in a benthic biofilm: migration of benthic diatoms. Diatom Res 19:181–202.

    Google Scholar 

  • Geng L, Alexander B, Cole-Dai J, Steig EJ, Savarino J, Sofen ED, Schauer AJ. 2014. Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change. Proc Natl Acad Sci 111:5808.

    CAS  PubMed  Google Scholar 

  • Giles MP, Michelutti N, Grooms C, Smol JP. 2018. Long-term limnological changes in the Ecuadorian páramo: Comparing the ecological responses to climate warming of shallow waterbodies versus deep lakes. Freshw Biol 63:1316–25.

    Google Scholar 

  • Grimm E. 1991. TILIA version 1.11. TILIAGRAPH version 1.18. A users notebook. Illinois State Museum, Springfield.

  • Gurnell A. 2014. Plants as river system engineers. Earth Surf Processes Landforms 39:4–25.

    Google Scholar 

  • Hadley KR, Paterson AM, Rühland KM, White H, Wolfe BB, Keller W, Smol JP. 2019. Biological and geochemical changes in shallow lakes of the Hudson Bay Lowlands: a response to recent warming. J Paleolimnol 61:313–28.

    Google Scholar 

  • Hobbs WO, Lafrancois BM, Stottlemyer R, Toczydlowski D, Engstrom DR, Edlund MB, Almendinger JE, Strock KE, VanderMeulen D, Elias JE, Saros JE. 2016. Nitrogen deposition to lakes in national parks of the western Great Lakes region: isotopic signatures, watershed retention, and algal shifts. Global Biogeochem Cycles 30:514–33.

    CAS  Google Scholar 

  • Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PB, Wolfe AP. 2011. A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334:1545.

    CAS  PubMed  Google Scholar 

  • Hu Z, Anderson NJ, Yang X, McGowan S. 2014. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Global Change Biol 20:1614–28.

    Google Scholar 

  • Hu Z, Yang X, Anderson NJ, Li Y. 2018. The landscape-atmosphere continuum determines ecological change in alpine lakes of SE tibet. Ecosystems 21:839–51.

    Google Scholar 

  • Kang W, Chen G, Wang J, Huang L, Wang L, Li R, Hu K, Liu Y, Tao J, Blais JM, Smol JP. 2019. Assessing the impact of long-term changes in climate and atmospheric deposition on a shallow alpine lake from southeast Tibet. Sci Total Environ 650:713–24.

    CAS  PubMed  Google Scholar 

  • Krammer K, Lange-Bertalot H. (eds). 1986-1991 Bacillariophyceae., Gustav Fischer Verlag, Stuttgart/Jena.

  • Laing TE, Smol JP. 2000. Factors influencing diatom distributions in circumpolar treeline lakes of northern Russia. J Phycol 36:1035–48.

    CAS  Google Scholar 

  • Leavitt P, Hodgson D. 2001. Sigmentary pigments. In: Smol J, Birks HJ, Last W, Bradley R, Alverson K, Eds. Tracking environmental change using lake sediments. Amsterdam: Springer. p 295–325.

    Google Scholar 

  • Lehmann MF, Bernasconi SM, Barbieri A, McKenzie JA. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 66:3573–84.

    CAS  Google Scholar 

  • Li Y, Chen X, Xiao X, Zhang H, Xue B, Shen J, Zhang E. 2018. Diatom-based inference of Asian monsoon precipitation from a volcanic lake in southwest China for the last 18.5 ka. Quaternary Science Reviews 182:109–20.

    Google Scholar 

  • Liu J, Chen Y, Ma L, Pu H, Liu C, Zhao Z, Shu Q. 2017. The δ13C of cellulose from modern plants and its responses to the atmosphere: from the peatland records of Dajiuhu, China. Holocene 28(3):408–14.

    CAS  Google Scholar 

  • Lotter AF, Bigler C. 2000. Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquatic Sciences 62:125–41.

    Google Scholar 

  • McGowan S. 2013. Encyclopedia of quaternary science (Second Edition). In: Elias SA, Mock CJ, Eds. Encyclopedia of quaternary science (Second Edition). Amsterdam: Elsevier. p 326–38.

    Google Scholar 

  • McGowan S, Anderson NJ, Edwards ME, Hopla E, Jones V, Langdon PG, Law A, Soloveiva N, Turner S, van Hardenbroek M, Whiteford EJ, Wiik E. 2018a. Vegetation transitions drive the autotrophy-heterotrophy balance in Arctic lakes. Limnol Oceanogr Lett 3:246–55.

    Google Scholar 

  • McGowan S, Gunn HV, Whiteford EJ, Anderson NJ, Jones VJ, Law AC. 2018b. Functional attributes of epilithic diatoms for palaeoenvironmental interpretations in South-West Greenland lakes. J Paleolimnol 60:273–98.

    PubMed  Google Scholar 

  • McGowan S, Leavitt PR, Hall RI. 2005. A whole-lake experiment to determine the effects of winter droughts on shallow lakes. Ecosystems 8:694–708.

    CAS  Google Scholar 

  • Meyers PA, Teranes JL. 2001. Tracking environmental change using lake sediments. In: Last WM, Smol JP, Eds. Physical and geochemical methods. Dordrecht: Springer. p 239–69.

    Google Scholar 

  • Mo R. 2019. The characteristics of elemental composition of soil in alpine basins in the Middle Yangtze reaches-a case study in Dajiuhu and Congping, China University of Geosciences (Wuhan), Wuhan.

  • Moorhouse HL, McGowan S, Taranu ZE, Gregory-Eaves I, Leavitt PR, Jones MD, Barker P, Brayshaw SA. 2018. Regional versus local drivers of water quality in the Windermere catchment, Lake District, United Kingdom: The dominant influence of wastewater pollution over the past 200 years. Global Change Biol 24:4009–22.

    Google Scholar 

  • Moser KA, Baron JS, Brahney J, Oleksy IA, Saros JE, Hundey EJ, Sadro SA, Kopacek J, Sommaruga R, Kainz MJ, Strecker AL, Chandra S, Walters DM, Preston DL, Michelutti N, Lepori F, Spaulding SA, Christianson KR, Melack JM, Smol JP. 2019. Mountain lakes: eyes on global environmental change. Global Planet Change 178:77–95.

    Google Scholar 

  • Neumann T, Stögbauer A, Walpersdorf E, Stüben D, Kunzendorf H. 2002. Stable isotopes in recent sediments of Lake Arendsee, NE Germany: response to eutrophication and remediation measures. Palaeogeogr Palaeoclimatol Palaeoecol 178:75–90.

    Google Scholar 

  • Rantala MV, Luoto TP, Weckström J, Rautio M, Nevalainen L. 2017. Climate drivers of diatom distribution in shallow subarctic lakes. Freshw Biol 62:1971–85.

    CAS  Google Scholar 

  • Reddy KR, Wetzel RG, Kadlec RH. 2005. Biogeochemistry of Phosphorus in Wetlands. Phosphorus: Agriculture and the Environment. pp 263–316.

    Google Scholar 

  • Robinson CT, Kawecka B. 2005. Benthic diatoms of an Alpine stream/lake network in Switzerland. Aquat Sci 67:492–506.

    CAS  Google Scholar 

  • Rühland K, Paterson A, Smol J. 2015. Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–35.

    Google Scholar 

  • Saros JE, Clow DW, Blett T, Wolfe AP. 2011. Critical nitrogen deposition loads in high-elevation lakes of the Western US inferred from paleolimnological records. Water Air Soil Pollut 216:193–202.

    CAS  Google Scholar 

  • Saros JE, Michel TJ, Interlandi SJ, Wolfe AP. 2005. Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681–9.

    CAS  Google Scholar 

  • Scheffer M, Jeppesen E. 2007. Regime shifts in shallow lakes. Ecosystems 10:1–3.

    Google Scholar 

  • Šmilauer P, Lepš J. 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge: Cambridge University Press.

    Google Scholar 

  • Smol JP. 2016. Arctic and Sub-Arctic shallow lakes in a multiple-stressor world: a paleoecological perspective. Hydrobiologia 778:253–72.

    Google Scholar 

  • Spaulding SA, Otu MK, Wolfe AP, Baron JS. 2015. Paleolimnological Records of Nitrogen Deposition in Shallow, High-Elevation Lakes of Grand Teton National Park, Wyoming, U.S.A. Arctic Antarct Alpine Res 47:703–17.

    Google Scholar 

  • Squires MM, Lesack LFW, Huebert D. 2002. The influence of water transparency on the distribution and abundance of macrophytes among lakes of the Mackenzie Delta, Western Canadian Arctic. Freshw Biol 47:2123–35.

    Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN. 2000. A high-resolution millennial record of the south Asian Monsoon from Himalayan Ice Cores. Science 289:1916.

    CAS  PubMed  Google Scholar 

  • Tuchman NC, Schollett MA, Rier ST, Geddes P. 2006. Advances in algal biology: a commemoration of the work of Rex Lowe. In: Stevenson RJ, Pan Y, Kociolek JP, Kingston JC, Eds. Developments in hydrobiology. Dordrecht: Springer.

    Google Scholar 

  • Vadeboncoeur Y, Jeppesen E, Zanden MJV, Schierup HH, Christoffersen K, Lodge DM. 2003. From Greenland to green lakes: Cultural eutrophication and the loss of benthic pathways in lakes. Limnol Oceanogr 48:1408–18.

    Google Scholar 

  • Van Dam H, Mertens A, Sinkeldam J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands J Aquat Ecol 28:117–33.

    Google Scholar 

  • Vogt RJ, Rusak JA, Patoine A, Leavitt PR. 2011. Differential effects of energy and mass influx on the landscape synchrony of lake ecosystems. Ecology 92:1104–14.

    PubMed  Google Scholar 

  • Wang R, Goll D, Balkanski Y, Hauglustaine D, Boucher O, Ciais P, Janssens I, Penuelas J, Guenet B, Sardans J, Bopp L, Vuichard N, Zhou F, Li B, Piao S, Peng S, Huang Y, Tao S. 2017. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biol 23:4854–72.

    Google Scholar 

  • Wang SW, Zhao ZG, Li WJ. 2009. Atlas of seasonal temperature and precipitation anomalies over China (1880–2007). Beijing: China Meteorological Press.

    Google Scholar 

  • Wolfe AP, Hobbs WO, Birks HH, Briner JP, Holmgren SU, Ingólfsson Ó, Kaushal SS, Miller GH, Pagani M, Saros JE, Vinebrooke RD. 2013. Stratigraphic expressions of the Holocene-Anthropocene transition revealed in sediments from remote lakes. Earth Sci Rev 116:17–34.

    CAS  Google Scholar 

  • Yan Y, Wang L, Li J, Li JJ, Zou YF, Zhang JY, Li P, Liu Y, Xu B, Gu ZY, Wan XQ. 2018. Diatom response to climatic warming over the last 200 years: a record from Gonghai Lake, North China. Palaeogeogr Palaeoclimatol Palaeoecol 495:48–59.

    Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (41572343). We acknowledge Teresa Needham, Zhang Zhiqi, Huang Xianyu, Qiao Qianglong, Zhang Yiming, Zhang Zhou, Liang Jia, Xia Weilan, Song Huyue, Ji Junliang, Jiang ying and Ji Jing for field and laboratory assistance. We are grateful to anonymous reviewers and the subject-matter editor Dr. James Elser for their constructive comments. This work is dedicated affectionately to Xu’s father Mr. Chen Xianci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Additional information

Author Contributions XC and SM conceived and designed the study. XC, SM, JP, TZ, XB, and LZ collected and analysed the data. XC and SM wrote the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., McGowan, S., Peng, J. et al. Local and Regional Drivers of Environmental Changes in Two Subtropical Montane Ponds (Central China) Over the Last Two Centuries. Ecosystems 24, 565–582 (2021). https://doi.org/10.1007/s10021-020-00535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00535-2

Keywords

Navigation