Skip to main content
Log in

El Niño–Southern Oscillations and Pacific Decadal Oscillation as Drivers of the Decadal Dynamics of Benthic Macrofauna in Two Subtropical Estuaries (Southern Brazil)

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are large-scale climatic phenomena affecting atmospheric and oceanic teleconnections, and thus triggering weather events at different temporal and spatial scales, both in tropical and extratropical areas. During 11 years (2007–2017), the influence of ENSO events (El Niño, La Niña and neutral), ENSO types (canonical and Modoki) and PDO phases (cold and warm) on meteorological conditions and macrobenthic invertebrates were analyzed in two distinct (tide-dominated and river-dominated) subtropical estuaries of Southern Brazil. The estuarine macrobenthic communities differed markedly, with higher species richness in the tide-dominated estuary (146 taxa) than river-dominated (44). We showed that long-term variability of benthic macrofauna in both estuaries was strongly influenced by the PDO and ENSO events. However, the signs of PDO and ENSO effects differed between the estuaries. While the main modulating force of the decadal variability of the macrofauna of the tide-dominated estuary was the PDO (19%), the river-dominated estuary was primarily influenced by the ENSO (9%). Besides, PDO and ENSO teleconnections have combined effects, with higher macrofauna dissimilarities during constructive periods (PDO Positive/EL Niño vs. PDO Negative/La Niña). Our findings indicate that: (1) The effects of the ENSO on coastal areas are dependent of the spatial scale and the intrinsic characteristics of each estuary; (2) Studies relating ENSO and biodiversity should consider the ENSO type (Modoki and canonical) and interdecadal modes, such as PDO, because the location of the warm pools and the intensity of induced heating affect the atmospheric teleconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anderson M, Gorley RN, Clarke K. 2008. PERMANOVA+ for primer: guide to software and statistical methods Plymouth. Plymouth: PRIMER-E Ltd.

    Google Scholar 

  • Ashok K, Tam CY, Lee WJ. 2009. ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys Res Lett 36:1–5.

    Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T. 2007. El Niño Modoki and its possible teleconnection. J Geophys Res Ocean 112:1–27.

    Google Scholar 

  • Beard JM, Moltschaniwskyj NA, Crawford CM, Gibson JAE, Ross DJ. 2019. Using macrofaunal communities to inform estuarine classification. Mar Fresh Res 70:371–81.

    Google Scholar 

  • Bemvenuti CE, Angonesi LG, Gandra MS. 2005. Effects of dredging operations on soft bottom macrofauna in a harbor in the Patos Lagoon estuarine region of southern Brazil. Braz J Biol 65:573–81.

    CAS  PubMed  Google Scholar 

  • Bernardino AF, Netto SA, Pagliosa PR, Barros F, Christofoletti RA, Rosa Filho JS, Colling A, Lana PC. 2015. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions. Estuar Coast Shelf Sci 166:74–82.

    Google Scholar 

  • Bianchi CN. 2007. Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21.

    Google Scholar 

  • Bjerknes J. 1969. Monthly weather review atmospheric teleconnections. Mon Weather Rev 97:163–72.

    Google Scholar 

  • Cai W, Cowan T. 2009. La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:9–12.

    Google Scholar 

  • Clarke K, Gorley RN. 2006. Primer v6: user manual/tutorial. Plymouth: PRIMER-E Ltd.

    Google Scholar 

  • Colling LA, Bemvenuti CE, Gandra MS. 2007. Seasonal variability on the structure of sublittoral macrozoobenthic association in the Patos Lagoon estuary, southern Brazil. Iheringia Ser Zool 97:257–62.

    Google Scholar 

  • Currie DR, Small KJ. 2005. Macrobenthic community responses to long-term environmental change in an east Australian sub-tropical estuary. Estuar Coast Shelf Sci 63:315–31.

    Google Scholar 

  • Day JW, Crump BC, Kemp WM, Yáñez-Arancibia A. 2013. Estuarine ecology. Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Del-Pilar-Ruso Y, San MG. 2012. Description of a new species of Sphaerosyllis Claparède, 1863 (Polychaeta: Syllidae: Exogoninae) from the Alicante coast (W Mediterranean) and first reports of two other species of Syllidae for the Mediterranean Sea and the Iberian Peninsula. Mediterr Mar Sci 13:187–97.

    Google Scholar 

  • Dittmann S, Baring R, Baggalley S, Cantin A, Earl J, Gannon R, Keuning J, Mayo A, Navong N, Nelson M, Noble W, Ramsdale T. 2015. Drought and flood effects on macrobenthic communities in the estuary of Australia’s largest river system. Estuar Coast Shelf Sci 165:36–51.

    Google Scholar 

  • Drumm DT, Heard RW. 2011. Systematic revision of the family Kalliapseudidae (Crustacea: Tanaidacea). Zootaxa 3142:1–172.

    Google Scholar 

  • Fernandes LG, Rodrigues RR. 2018. Changes in the patterns of extreme rainfall events in Southern Brazil. Int J Climatol 38:1337–52.

    Google Scholar 

  • Freitas-Júnior F, Christoffersen ML, de Araújo JP, Branco JO. 2013. Spatiotemporal distribution and population structure of Monokalliapseudes schubarti (Tanaidacea: Kalliapseudidae) in an estuary in southern Brazil. Sci World J 2013:1–9.

    Google Scholar 

  • Gower JC. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–38.

    Google Scholar 

  • Grilo TF, Cardoso PG, Dolbeth M, Pardal MA. 2009. Long-term changes in amphipod population dynamics in a temperate estuary following ecosystem restoration. Hydrobiologia 630:91–104.

    Google Scholar 

  • Grimm AM. 2019. South American monsoon and its extremes. In: Vuruputur V, Sukhatme J, Murtugudde R, Roca R, Eds. Tropical extremes: natural variability and trends. Amsterdam: Elsevier. p 51–93.

    Google Scholar 

  • Grimm AM, Ambrizzi T. 2009. Teleconnections into South America from the tropics and extratropics on interannual and intraseasonal timescales. In: Vimeux F, Sylvestre F, Khodr M, Eds. Past climate variability in South America and surrounding regions. Berlin: Springer. p 159–91.

    Google Scholar 

  • Grimm AM, Barros VR, Doyle ME. 2000. Climate variability in southern South America associated with El Niño and La Niña events. J Clim 13:35–58.

    Google Scholar 

  • Grimm AM, Ferraz SET, Gomes J. 1998. Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J Clim 11:2863–80.

    Google Scholar 

  • Ha DT, Ouillon S, Vinh GV. 2018. Water and suspended sediment budgets in the lower Mekong from high-frequency measurements (2009–2016). Water 10:846.

    Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang HM. 2017. Extended reconstructed Sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30:8179–205.

    Google Scholar 

  • Ignacio F, Toldo Junior EE. 2013. ENSO impacts on Atlantic watersheds of South America. QEG 4:34–41.

    Google Scholar 

  • Kayano MT, Andreoli RV, Garcia SR, Souza RAF. 2018. How the two nodes of the tropical Atlantic sea surface temperature dipole relate the climate of the surrounding regions during austral autumn. Int J Climatol 38:3927–41.

    Google Scholar 

  • Kayano MT, Andreoli RV, Souza RAF. 2019. El Niño-Southern Oscillation related teleconnections over South America under distinct Atlantic multidecadal oscillation and Pacific interdecadal oscillation backgrounds: La Niña. Int J Climatol 39:1359–72.

    Google Scholar 

  • Kim ST, Yu JY. 2012. The two types of ENSO in CMIP5 models. Geophys Res Lett 39:1–6.

    CAS  Google Scholar 

  • Kröncke I, Neumann H, Dippner JW, Holbrook S, Lamy T, Miller R, Padedda BM, Pulina S, Reed DC, Reinikainen M, Satta CT, Sechi N, Soltwedel T, Suikkanen S, Lugliè A. 2019. Comparison of biological and ecological long-term trends related to northern hemisphere climate in different marine ecosystems. Nat Conserv 34:311–41.

    Google Scholar 

  • Lana C, Christofoletti R, Gusmão JB Jr, Barros TL, Spier D, Costa TM. 2018. Benthic estuarine assemblages of the southeastern brazil marine ecoregion (SBME). In: Lana P, Bernardino A, Eds. Brazilian Estuaries. Brazilian Marine Biodiversity. Cham: Springer. p 117–75.

    Google Scholar 

  • Lee SH, Seo KH, Kwon M. 2019. Combined effects of El Niño and the Pacific Decadal Oscillation on summertime circulation over East Asia. Asia Pac J Atmos Sci 55:91–9.

    Google Scholar 

  • Legendre P, Anderson MJ. 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24.

    Google Scholar 

  • Lin R, Zheng F, Dong X. 2018. ENSO frequency asymmetry and the Pacific Decadal Oscillation in observations and 19 CMIP5 models. Adv Atmos Sci 35:495–506.

    Google Scholar 

  • Magee AD, Verdon-Kidd DC, Diamond HJ, Kiem AS. 2017. Influence of ENSO, ENSO Modoki, and the IPO on tropical cyclogenesis: a spatial analysis of the southwest Pacific region. Int J Climatol 37:1118–37.

    Google Scholar 

  • Mantua NJ. 2009. Patterns of change in climate and Pacific salmon production. Am Fish Soc Symp 70:1–15.

    Google Scholar 

  • Mantua NJ, Hare SR. 2002. The Pacific decadal oscillation. J Oceanogr 58:35–44.

    Google Scholar 

  • Marathe S, Ashok K, Swapna P, Sabin TP. 2015. Revisiting El Niño Modokis. Clim Dyn 45:3527–45.

    Google Scholar 

  • Marshall KN, Duffy-Anderson JT, Ward EJ, Anderson SC, Hunsicker ME, Williams BC. 2019. Long-term trends in ichthyoplankton assemblage structure, biodiversity, and synchrony in the Gulf of Alaska and their relationships to climate. Prog Oceanogr 170:134–45.

    Google Scholar 

  • McArdle BH, Anderson MJ. 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82(1):290–9.

    Google Scholar 

  • McNally A. 2018. FLDAS noah land surface model L4 global monthly 0.1 × 0.1 degree (MERRA-2 and CHIRPS), NASA/GSFC/HSL, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC). https://giovanni.gsfc.nasa.gov/giovanni/ Accessed 17 March 2019.

  • Molod A, Takacs L, Suarez M, Bacmeister J. 2015. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev 8: 1339–1356. 10.5194/gmd-8-1339-2015. Accessed 25 April 2019.

  • Netto SA, Fonseca G. 2017. Regime shifts in coastal lagoons: evidence from free-living marine nematodes. PLoS ONE 12:1–19.

    Google Scholar 

  • Netto SA, Pagliosa PR, Colling A, Fonseca AL, Brauko KM. 2018. Benthic estuarine assemblages from the Southern Brazilian marine ecoregion. In: Lana P, Bernardino A, Eds. Brazilian Estuaries. Brazilian marine biodiversity. Cham: Springer. p 177–212.

    Google Scholar 

  • Odebrecht C, Secchi ER, Abreu PC, Muelbert JH. 2017. Biota of the Patos Lagoon Estuary and adjacent marine coast: long-term changes induced by natural and human-related factors. Mar Biol Res 13:1–2.

    Google Scholar 

  • Penalba OC, Rivera JA. 2016. Precipitation response to El Niño/La Niña events in Southern South America - Emphasis in regional drought occurrences. Adv Geosci 42:1–14.

    Google Scholar 

  • Pezy J-P, Baffreau A, Dauvin J-C. 2017. Revisited Syllidae of the English Channel coarse sediment communities. J Mar Biol Assoc UK 97:1051–8.

    CAS  Google Scholar 

  • Pinotti RM, Colling A, Bemvenuti CE. 2011. Temporal dynamics of deep infralittoral macrobenthic fauna inside a subtropical estuarine environment. Braz J Aquat Sci Technol 15:26–41.

    Google Scholar 

  • Pollack JB, Palmer TA, Montagna PA. 2011. Long-term trends in the response of benthic macrofauna to climate variability in the Lavaca-Colorado Estuary, Texas. Mar Ecol Prog Ser 436:67–80.

    Google Scholar 

  • Prado LF, Wainer I. 2013. Planetary-scale climatic indices and relationship between decadal variability of rainfall in northeastern and southern Brazil. Rev Bras Geof 31:31–41.

    Google Scholar 

  • Reboita MS, Ambrizzi T, Silva BA, Pinheiro RF, da Rocha RP. 2019. The South Atlantic subtropical anticyclone: present and future climate. Front Earth Sci 7:1–15.

    Google Scholar 

  • Rodriguez-Ramirez A, Grove CA, Zinke J, Pandolfi JM, Zhao J. 2014. Coral luminescence identifies the Pacific Decadal Oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef. PLoS ONE 9:1–11.

    Google Scholar 

  • Schettini CAF. 2002. Caracterização Física do Estuário do Rio Itajaí-açu, SC. RBRH 7:123–42.

    Google Scholar 

  • Schettini AF. 2008. Hidrologia Do Saco Da Fazenda, Itajaí, SC. Braz J Aquat Sci Technol 12:49–58.

    Google Scholar 

  • Schettini CAF, Toldo E. 2006. Fine sediment transport modes in the Itajai-Acu estuary, Southern Brazil. J Coast Res 2004:515–19.

    Google Scholar 

  • Taschetto AS, Sen GA, Hendon HH, Ummenhofer CC, England MH. 2011. The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during EL Niño events. J Clim 24:3734–47.

    Google Scholar 

  • Tedeschi RG, Cavalcanti IFA, Grimm AM. 2013. Influences of two types of ENSO on South American precipitation. Int J Climatol 33:1382–400.

    Google Scholar 

  • Verdon DC, Franks SW. 2006. Long-term behaviour of ENSO: interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys Res Lett 33:1–5.

    Google Scholar 

  • Viegas J, Andreoli RV, Kayano MT, Candido LA, Augusto R, De SF, Hall DH, De SA, Garcia SR, Temoteo GG, Isabella W, Valentin D. 2019. Caracterização dos Diferentes Tipos de El Niño e seus Impactos na América do Sul a Partir de Dados Observados e Modelados Characterization of the Different El Niño Types and their Impacts in South America From Observed and Modeled Data. RBMET 34:43–67.

    Google Scholar 

  • Vieira CV, Horn-Filho NO, Bonetti CVDHC, Bonetti J. 2008. Caracterização morfosedimentar e setorização do Complexo Estuarino da Baía da Babitonga/SC M. Bol Par Geoc 62:85–105.

    Google Scholar 

  • Yeh SW, Cai W, Min SK, McPhaden MJ, Dommenget D, Dewitte B, Collins M, Ashok K, Il AS, Yim BY, Kug JS. 2018. ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56:185–206.

    Google Scholar 

  • Yeh SW, Kirtman BP, Kug JS, Park W, Latif M. 2011. Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38:2–6.

    Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF. 2009. El Nino in a changing climate. Nature 461:511–14.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially financed by the Coordination for the Improvement of Higher Education Personnel (CAPES) and Santa Catarina State Research Foundation (FAPESC). We are indebted to the Marine Science Laboratory/Unisul team, especially Aline Meurer. This would have been impossible without her dedication and knowledge. We deeply thank Acquaplan and their team for the field work along all these years. Dr. Tiago Pereira (University of California Riverside) and Dr. Angelo Bernardino (Federal University of Espírito Santo) are also thanked for valuable comments on the manuscript. We thank the anonymous reviewers and the editors for the constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio A. Netto.

Additional information

Authors Contributions

ASF and SAN designed the study, performed research and analyzed data. ASF wrote the manuscript with substantial contributions from SAN. All authors edited the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francisco, A.S., Netto, S.A. El Niño–Southern Oscillations and Pacific Decadal Oscillation as Drivers of the Decadal Dynamics of Benthic Macrofauna in Two Subtropical Estuaries (Southern Brazil). Ecosystems 23, 1380–1394 (2020). https://doi.org/10.1007/s10021-019-00475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00475-6

Keywords

Navigation