Skip to main content
Log in

Effects of Mineral Nitrogen Partitioning on Tree–Grass Coexistence in West African Savannas

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Coexistence between trees and grasses in savannas is generally assumed to be due to a combination of partial niche separation for water acquisition and disturbances impacting the demography of trees and grasses. We propose a mechanism of coexistence solely based on the partitioning of the two dominant forms of mineral nitrogen (N), ammonium (NH4+) and nitrate (NO3). We built a mean-field model taking into account the capacity of grasses and trees to alter nitrification fluxes as well as their relative preferences for NH4+ versus NO3. Two models were studied and parameterized for the Lamto savanna (Côte d’Ivoire): In the first model, the nitrification only depends on the quantity of available NH4+, and in the second model the nitrification rate is also controlled by tree and grass biomass. Consistent with coexistence theories, our results show that taking these two forms of mineral N into account can allow coexistence when trees and grasses have contrasting preferences for NH4+ and NO3. Moreover, coexistence is more likely to occur for intermediate nitrification rates. Assuming that grasses are able to inhibit nitrification while trees can stimulate it, as observed in the Lamto savanna, the most likely case of coexistence would be when grasses prefer NH4+ and trees NO3. We propose that mineral N partitioning is a stabilizing coexistence mechanism that occurs in interaction with already described mechanisms based on disturbances by fire and herbivores. This mechanism is likely relevant in many N-limited African savannas with vegetation composition similar to the one at the Lamto site, but should be thoroughly tested through empirical studies and new models taking into account spatiotemporal heterogeneity in nitrification rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abbadie L. 2006. Nitrogen inputs to and outputs from the soil-plant system. In: Abbadie L, Gignoux J, Le Roux X, Lepage M, Eds. Lamto: structure, functioning, and dynamics of a savanna ecosystem. New York: Springer. p 255–75.

    Google Scholar 

  • Abbadie L, Gignoux J, Le Roux X, Lepage M, Eds. 2006. Lamto: structure, functioning, and dynamics of a savanna ecosystem. New York: Springer.

    Google Scholar 

  • Accatino F, De Michele C, Vezzoli R, Donzelli D, Scholes RJ. 2010. Tree–grass co-existence in savanna: Interactions of rain and fire. J Theor Biol 267:235–42.

    PubMed  Google Scholar 

  • Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608.

    Google Scholar 

  • Armstrong RA, McGehee R. 1980. Competitive exclusion. Am Nat 115:151–70.

    Google Scholar 

  • Ashton IW, Miller AE, Bowman WD, Suding KN. 2010. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–60.

    PubMed  Google Scholar 

  • Barot S, Gignoux J, Menaut JC. 1999. Demography of a savanna palm tree: predictions from comprehensive spatial patterns analyses. Ecology 80:1987–2005.

    Google Scholar 

  • Barot S, Gignoux J. 2004. Mechanisms promoting plant coexistence: can all the proposed processes be reconciled? Oikos 106:185–92.

    Google Scholar 

  • Baudena M, Rietkerk M. 2013. Complexity and coexistence in a simple spatial model for arid savanna ecosystems. Theor Ecol 6:131–41.

    Google Scholar 

  • Bernhard-Reversat F, Poupon H. 1980. Nitrogen cycling in a soil-tree system in a sahelian savanna. Example of Acacia senegal. In: Rosswall, T. editor. Nitrogen cycling in West African ecosystems. Royal Swedish Academy of Sciences. pp. 363–369.

  • Bond WJ, Midgley GF. 2000. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol 6:865–9.

    Google Scholar 

  • Boudsocq S, Lata JC, Mathieu J, Abbadie L, Barot S. 2009. Modelling approach to analyse the effects of nitrification inhibition on primary production. Funct Ecol 23:220–30.

    Google Scholar 

  • Boudsocq S, Niboyet A, Lata JC, Raynaud X, Loeuille N, Mathieu J, Blouin M, Abbadie L, Barot S. 2012. Plant preference for ammonium versus nitrate: a neglected determinant of ecosystem functioning? Am Nat 180:60–9.

    CAS  PubMed  Google Scholar 

  • Britto DT, Kronzucker HJ. 2002. NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567–84.

    CAS  Google Scholar 

  • Britto DT, Kronzucker HJ. 2013. Ecological significance and complexity of N-source preference in plants. Ann Bot 112:957–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chesson P. 2000. Mechanisms of maintenance of species diversity. Ann Rev Ecol Evol Syst 31:343–66.

    Google Scholar 

  • D’Antonio CM, Vitousek PM. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Syst 23:63–87.

    Google Scholar 

  • Donzelli D, De Michele C, Scholes RJ. 2013. Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas. J Theor Biol 332:181–90.

    CAS  PubMed  Google Scholar 

  • Ellner SP, Snyder RE, Adler PB, Hooker G. 2019. An expanded modern coexistence theory for empirical applications. Ecol Lett 22:3–18.

    PubMed  Google Scholar 

  • Falkengren-Grerup U, Lakkenborg-Kristensen H. 1994. Importance of ammonium and nitrate to the performance of herb-layer species from deciduous forests in southern sweden. Environ Exp Bot 34:31–8.

    Google Scholar 

  • Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM. 2007. Ammonium and nitrate uptake by the floating plant Landoltia punctata. Ann Bot 99:365–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • February EC, Higgins SI, Bond WJ, Swemmer L. 2013. Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94:1155–64.

    PubMed  Google Scholar 

  • Forde BG, Clarkson DT. 1999. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv Bot Res 30:1–90.

    CAS  Google Scholar 

  • Gignoux J, Lahoreau G, Julliard R, Barot S. 2009. Establishment and early persistence of tree seedlings in an annually burned savanna. J Ecol 97:484–95.

    Google Scholar 

  • Hardin G. 1960. The competitive exclusion principle. Science 131:1292–7.

    CAS  PubMed  Google Scholar 

  • Harrison KA, Bol R, Bardgett RD. 2007. Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–99.

    PubMed  Google Scholar 

  • Higgins SI, Bond WJ, Trollope WSW. 2000. Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. J Ecol 88:213–29.

    Google Scholar 

  • Higgins SI, Scheiter S, Sankaran M. 2010. The stability of African savannas: insights from the indirect estimation of the parameters of a dynamic model. Ecology 91:1682–92.

    PubMed  Google Scholar 

  • Hochberg ME, Menaut JC, Gignoux J. 1994. The influences of tree biology and fire in the spatial structure of the West African savannah. J Ecol 82:217–26.

    Google Scholar 

  • Holdo RM, Nippert JB, Mack MC. 2018. Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna. Oecologia 186:269–80.

    PubMed  Google Scholar 

  • Holt RD. 2008. Perspectives on resource pulses. Ecology 89:671–81.

    PubMed  Google Scholar 

  • Houlton BZ, Sigman DM, Schuur EAG, Hedin LO. 2007. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc Natl Acad Sci 104:8902–6.

    CAS  PubMed  Google Scholar 

  • Huangfu C, Li H, Chen X, Liu H, Wang H, Yang D. 2016. Response of an invasive plant, Flaveria bidentis, to nitrogen addition: a test of form-preference uptake. Biol Invasions 18:3365–80.

    Google Scholar 

  • Jeltsch F, Weber GE, Grimm V. 2000. Ecological buffering mechanisms in savannas: a unifying theory of long-term tree–grass coexistence. Plant Ecol 161:161–71.

    Google Scholar 

  • Jumpponen A, Högberg P, Huss-Danell K, Mulder CPH. 2002. Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Funct Ecol 16:454–61.

    Google Scholar 

  • Kahmen A, Renker C, Unsicker SB, Buchmann N. 2006. Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology 87:1244–55.

    PubMed  Google Scholar 

  • Konnerup D, Brix H. 2010. Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquat Bot 92:142–8.

    CAS  Google Scholar 

  • Lata JC. 1999. Interactions between microbial processes, nutrient cycle and grass cover functioning: Study of soil nitrification under the Gramineae Hyparrhenia diplandra in a wet tropical savanna of Côte d’Ivoire. France: University of Paris VI. PhD Thesis

    Google Scholar 

  • Lata JC, Guillaume K, Degrange V, Abbadie L, Lensi R. 2000. Relationships between root density of the African grass Hyparrhenia diplandra and nitrification at the decimetric scale: an inhibition-stimulation balance hypothesis. Proc R Soc B 267:595–600.

    CAS  PubMed  Google Scholar 

  • Lata JC, Degrange V, Raynaud X, Maron PA, Lensi R, Abbadie L. 2004. Grass populations control nitrification in savanna soils. Funct Ecol 18:605–11.

    Google Scholar 

  • Le Roux X, Abbadie L, Fritz H, Leriche H. 2006. Modification of the savanna functioning by herbivores. In: Abbadie L, Gignoux J, Le Roux X, Lepage M, Eds. Lamto: Structure, functioning, and dynamics of a savanna ecosystem. New York: Springer. p 185–98.

    Google Scholar 

  • Ludwig F, de Kroon H, Prins HHT, Berendse F. 2001. Effects of nutrients and shade on tree–grass interactions in an East African savanna. J Veg Sci 12:579–88.

    Google Scholar 

  • Maire V, Gross N, Da Silveira Pontes L, Picon-Cochard C, Soussana JF. 2009. Trade-off between root nitrogen acquisition and shoot nitrogen utilization across 13 co-occurring pasture grass species. Funct Ecol 23:668–79.

    Google Scholar 

  • Marschner H. 2008. Mineral nutrition of higher plants. 2nd edn. London: Acad Press.

    Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71.

    CAS  PubMed  Google Scholar 

  • Menaut JC, César J. 1979. Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60:1197–210.

    Google Scholar 

  • Miller AE, Bowman WD. 2002. Variations in nitrogen-15 natural abundance and nitrogen uptake traits among co-occuring alpine species: do species partition by nitrogen form? Oecologia 130:609–16.

    PubMed  Google Scholar 

  • Mordelet P, Menaut JC, Mariotti A. 1997. Tree and grass rooting patterns in an African humid savanna. J Veg Sci 8:65–70.

    Google Scholar 

  • Nacry P, Bouguyon E, Gojon A. 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1–29.

    CAS  Google Scholar 

  • Perry LG, Neuhauser C, Galatowitsch SM. 2003. Founder control and coexistence in a simple model of asymmetric competition for light. J Theor Biol 222:425–36.

    PubMed  Google Scholar 

  • R Development Core Team. 2014. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.

  • Rastetter EB, Agren GI. 2002. Changes in individual allometry can lead to species coexistence without niche separation. Ecosystems 5:789–801.

    Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD, Schmidt S. 2009. Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecol Appl 19:1546–60.

    CAS  PubMed  Google Scholar 

  • Rossiter-Rachor NA, Setterfield SA, Hutley LB, McMaster D, Schmidt S, Douglas MM. 2017. Invasive Andropogon gayanus (Gamba grass) alters decomposition and nitrogen fluxes in an Australian tropical savanna. Sci Rep 7:11705.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salsac L, Chaillou S, Morot-Gaudry JF, Lesaint C, Jolivet E. 1987. Nitrate and ammonium nutrition in plants. Plant Physiol Biochem 25:805–12.

    Google Scholar 

  • Sankaran M, Ratnam J, Hanan NP. 2004. Tree–grass coexistence in savannas revisited-insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–90.

    Google Scholar 

  • Sankaran M, Hanan NP, Scholes RJ, Ratnam J, Augustine DJ, Cade BS, Gignoux J, Higgins SI, Le Roux X, Ludwig F, Ardo J, Banyikwa F, Bronn A, Bucini G, Caylor KK, Coughenour MB, Diouf A, Ekaya W, Feral CJ, February EC, Frost PGH, Hiernaux P, Hrabar H, Metzger KL, Prins HHT, Ringrose S, Sea W, Tews J, Worden J, Zambatis N. 2005. Determinants of woody cover in African savannas. Nature 438:846–9.

    CAS  Google Scholar 

  • Sankaran M, Ratnam J, Hanan N. 2008. Woody cover in African savannas: the role of resources, fire and herbivory. Glob Ecol Biogeogr 17:236–45.

    Google Scholar 

  • Schenk HJ, Jackson RB. 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–94.

    Google Scholar 

  • Scholes RJ, Archer SR. 1997. Tree–grass interactions in savannas. Ann Rev Ecol Syst 28:517–44.

    Google Scholar 

  • Silvertown J. 2004. Plant coexistence and the niche. Trends Ecol Evol 19:605–11.

    Google Scholar 

  • Soetaert K, Petzoldt T, Woodrow S. 2010. Solving differential equations in R: Package deSolve. J Stat Softw 33:1–25.

    Google Scholar 

  • Srikanthasamy T, Leloup J, N’Dri AB, Barot S, Gervaix J, Koné AW, Koffi KF, Le Roux X, Raynaud X, Lata JC. 2018. Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biol Biochem 117:153–63.

    CAS  Google Scholar 

  • Staver AC, Archibald S, Levin SA. 2011a. The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–2.

    CAS  PubMed  Google Scholar 

  • Staver AC, Archibald S, Levin S. 2011b. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92:1063–72.

    PubMed  Google Scholar 

  • Subbarao GV, Rondon M, Ito O, Ishikawa T, Rao IM, Nakahara K, Lascano C, Berry WL. 2007. Biological nitrification inhibition (BNI)—is it a widespread phenomenon? Plant Soil 294:5–18.

    CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Hurtado MP, Ono H, Moreta DE, Salcedo AF, Yoshihashi AT, Ishikawa T, Ishitani M, Ohnishi-Kameyama M, Yoshida M, Rondon M, Rao IM, Lascano CE, Berry WL, Ito O. 2009. Evidence for biological nitrification inhibition in Brachiaria pastures. Proc Natl Acad Sci 106:17302–7.

    CAS  PubMed  Google Scholar 

  • Subbarao GV, Yoshihashi T, Worthington M, Nakahara K, Ando Y, Sahrawat KL, Rao IM, Lata JC, Kishii M, Braun HJ. 2015. Suppression of soil nitrification by plants. Plant Science 233:155–64.

    CAS  PubMed  Google Scholar 

  • Tavernier V. 2003. Interactions entre structures racinaires et cycle de l’azote en savane africaine. PhD Thesis, INA-P-G Paris, France.

  • Van Heerwaarden LM, Toet S, Aerts R. 2003. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101:664–9.

    Google Scholar 

  • Van Langevelde F, Van De Vijver CADM, Kumar L, Van De Koppel J, De Ridder N, Van Andel J, Skidmore AK, Hearne JW, Stroosnijder L, Bond WJ, Prins HHT, Rietkerk M. 2003. Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84:337–50.

    Google Scholar 

  • Villecourt P, Roose E. 1978. Charge en azote et en éléments minéraux majeurs des eaux de pluie, de pluviolessivage et de drainage dans la savane de Lamto (Côte d’Ivoire). Revue d’Ecologie et de Biologie du Sol 15:1–20.

    CAS  Google Scholar 

  • Walker BH, Noy-Meir I. 1982. Aspects of stability and resilience of savanna ecosystems. In: Huntley BJ, Walker BH, Eds. Ecology of tropical savannas. Berlin: Springer. p 556–90.

    Google Scholar 

  • Walter H. 1971. Ecology of tropical and subtropical vegetation. Edinburgh: Oliver & Boyd.

    Google Scholar 

  • Ward D. 2005. Do we understand the causes of bush encroachment in African savannas? Afr J Range Forage Sci 22:101–5.

    Google Scholar 

  • Ward D, Wiegand K, Getzin S. 2013. Walter’s two-layer hypothesis revisited: back to the roots!. Oecologia 172:617–30.

    PubMed  Google Scholar 

  • Wolfram Research. 2017. Mathematica, Version 10.0. Wolfram Research Champaign IL.

Download references

Acknowledgements

We thank the Ministry of Higher Education and Scientific Research of Côte d’Ivoire for the PhD grant of SK. This paper is dedicated to the memory of A. Konaré (1965-2017), director general of scientific research and innovation of Côte d’Ivoire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Konaré.

Additional information

Authors’ Contributions

SK, JG, JCL, SB and XR conceived or designed study and performed research. SK analyzed the model and wrote the manuscript with the contribution of all co-authors. All authors gave final approval for publication.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konaré, S., Boudsocq, S., Gignoux, J. et al. Effects of Mineral Nitrogen Partitioning on Tree–Grass Coexistence in West African Savannas. Ecosystems 22, 1676–1690 (2019). https://doi.org/10.1007/s10021-019-00365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00365-x

Keywords

Navigation